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Abstract.

Organocatalytic asymmetric Michael addition is considered among the most extensively studied, yet

challenging stereoselective reactions due to the fact that the electrophilic prochiral carbon in Michael acceptor
lies away from stereodirecting groups of the catalyst. Although there is a report on stereoselective organocatalysis
in Michael addition employing monofunctional secondary amine, the use of monofunctional primary amine for
the said reaction is not reported till date. In fact, no monofunctional aminocatalyst is reported yet for the synthesis
Y-nitro carbonyl compounds. Here we report our preliminary results on the enantioselective Michael addition
of different ketones to nitro olefins catalysed by monofunctional primary amine (1) derived from D-fructose.
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1. Introduction

Organocatalytic asymmetric Michael addition is one of
the most extensively studied stereoselective reactions in
recent years. The pioneering works of List' and Barbas?
on organocatalytic asymmetric Michael additions have
inspired many investigations®*~> employing multifunc-
tional amine catalysts such as amine-thioureas®'* and
substituted pyrrolidines. ¢ Carbohydrate is one of the
most enticing class of nature’s chiral pools due to their
chiral backbone that helps in stereochemical induction.
In 2008, Zhou et al., reported the advantage of using
bifunctional thiourea organocatalysts derived from o-
D-glucopyranose, galactose and lactose for asymmetric
Michael addition of acetyl acetone to nitro olefins
giving up to >99% yield and up to 96% enantiose-
lectivity.?” Benaglia et al.,*® used another new class
of glucosamine-based bifunctional organocatalysts for
nucleophilic Michael addition of acetylacetone to nitro
olefins and N-Boc imines of benzaldehyde to achieve
up to 93% yield and 83% ee. More recently, Peddinti
et al.,* and Shao et al.,***' reported organocatalysts
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derived from o-amino acids and carbohydrates for
asymmetric Michael addition in solvent-free conditions.
Given the importance of stereoselective Michael addi-
tion of carbonyl compounds to nitroalkenes** in the
synthesis of synthetically useful Y-nitro carbonyl com-
pounds,** Ma and co-workers reported bifunctional
thiourea catalysts prepared from commercially avail-
able B-D-glucopyranose for a highly enantioselective
Michael addition of aromatic ketones to nitroolefins. *¢

Even though the use of bifunctional amino catalysts is
routine, there is only one report on the use of monofunc-
tional amine for the said reaction. Gellman and Chi*’
used diphenylprolinol methyl ether, a monofunctional
secondary amine to catalyze intermolecular Michael
addition of simple aldehydes to relatively non-activated
enones with enantioselectivities up to 99% with cata-
lyst loading of 1-5 mol%. But the method worked best
with catechol as a co-catalyst, which was believed to
electrophilically activate the enone via hydrogen-bond
donation to the carbonyl oxygen. Interestingly, stere-
oselective organocatalysis employing monofunctional
primary amine is not reported till date. To our knowl-
edge, no monofunctional aminocatalyst is reported yet
for the synthesis Y-nitro carbonyl compounds as well.
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Therefore, we wish to report our preliminary results
on the enantioselective Michael addition of different
ketones to nitro olefins catalysed by monofunctional pri-
mary amine (1) derived from D-fructose (Scheme 1).

2. Experimental
2.1 General remarks

Chemicals and reagents were purchased from commercial
sources and used without further purification. IR spectra were
recorded on a Perkin—Elmer Spectrum One FTIR spectrom-
eter. "H NMR (400 MHz) and '3C NMR (100 MHz) spectra
were obtained on a Bruker AC-400 using CDCIl3 as solvent
and TMS as internal standard, unless otherwise stated. Mass
spectra were obtained from Waters ZQ 4000 mass spectrom-
eter by the ESI method, while the elemental analyses of the
complexes were performed on a Perkin—Elmer-2400 CHN/S
analyzer. Reactions were monitored by thin layer chromatog-
raphy (TLC). The melting points of the compounds were
recorded by open capillary method and were uncorrected.
HPLC analysis was carried out on a Waters M515 equipped
with Chiracel OD-H and Chiralcel AD-H columns using n-
hexane and 2-propanol as mobile phase at room temperature.

2.2 General procedure for Michael reaction

A mixture of D-fructose derived amine 1 (0.15 mmol), ben-
zoic acid (0.15 mmol) and ketone (4 mmol; 10 mmol in
the case of acetone) were stirred at room temperature for
30 min. Nitroolefin (1 mmol) was then added. The reaction
was allowed to run at room temperature and the progress
of the reaction was monitored by thin layer chromatogra-
phy. After the reaction was completed, saturated solution of
ammonium chloride was added to the reaction mixture and
stirred for another 10 min. The compound was extracted with
ethyl acetate (3 x 20 mL), washed with water (3 times), dried
over NapSO4 and concentrated to get the crude product. The
product obtained was further purified using flash column chro-
matography to obtain the pure Michael adduct.
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3. Results and Discussions

In continuation of our report*® on aldol reaction employ-
ing D-fructose based amine 1 as organocatalyst, we
wanted to extend the application of the catalysts 1-6 for
direct Michael addition reactions. It may be noted that
unlike aminocatalytic stereoselective Aldol and Henry
reactions, where the stereodirecting group binds with
carbonyl compound to facilitate the stereoselective 1,
2-addition reaction, the stereodirecting group bound to
the Michael acceptor stays away from the electrophilic
reaction centre, i.e., the carbon-carbon double bond. As
a result, use of bifunctional organocatalysts is an abso-
lute necessity in Michael type addition reaction where
both the donor and acceptor molecule bind with the
organocatalyst that comprises strategically placed stere-
odirecting cum activating groups to achieve the desired
selectivity (Figures 1, 2).
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Figure 3. D-fructose derived amines.
Table 1. Solvents effect of asymmetric Michael reaction using sugar derived organocatalysts.
° OZN\E ° O,N o
X _NO, é Amine 1- 6, rt /@/\é /@)\é
/©/\/ ’ Solvent : * :
MeO MeO MeO
syn anti
Entry Catalyst (15 mol%) Solvent t (h) Yield %* drb(syn:anti) eeSsyn anti
1 1 Neat 96 45 77:23 62 21
2 2 Neat 96 57 47:53 16 31
3 3/4/5/6 Neat 120 Trace - -
4 1 CH,Cl, 120 21 71:29 47 19
5 1 CHCl; 120 Trace 64:36 21 23
6 1 DMSO/DMF/CH3CN/H,O 120 Trace - -

Reaction condition: p-methoxy-g-nitrostyrene (0.2 mmol), catalyst (15 mol%) and cyclohexanone (0.8 mmol).

solated yields.

bDiastereoselectivity was determined by 'HNMR of the crude product or HPLC analysis of the pure product.

“Determined by HPLC analysis.

Given the fact that D-fructose based amines 1-6 pos-
sess the sugar backbone with two adjacent isopropyli-
dene rings which may control the stereoselectivity of the
Michael addition reaction similar to that of diphenylpro-
linol methyl ether,*” we screened the catalytic activity
and stereoselectivity of the catalysts 1-6 (Figure 3) by
taking the reaction of cyclohexanone and 4-methoxy -
nitrostyrene as the model reaction (Table 1). Moderate
yield (45%) with moderate diastereoselectivity (77:23
dr) and enantioselectivity (62%) were obtained for syn
product when the reaction was catalysed by 1 (Table 1,
entry 1).

When the model reaction was carried out with cat-
alysts 2 under the neat reaction conditions, Michael
product was obtained in 57% yield with 47:53 diastere-
omeric ratio and 31% ee for the anti adduct. Consistent
with our earlier observations in Aldol reaction, the fruc-
tose derived secondary amines 3—6 did not give any
product under this reaction conditions (Table 1, entry
3) which led us to conclude that because of high steric

congestion in secondary amines 3—6, the catalysts carry-
ing the primary amine may be more suitable to catalyze
the reaction.

A series of solvents were screened (Table 1, entries
4-6) to confirm that the reaction gave the best result in
the absence of solvents. Dichloromethane gave the best
result among the solvents under scrutiny (Table 1, entry
4) giving 21% yield with 47% ee for the syn adduct.
Although the reaction gave trace amount of the desired
product with inferior stereoselectivity in CHCI;, the
reaction did not work in other solvents at all (Table 1,
entry 6). Catalyst 2 gave better result in term of yield, but
the selectivity was rather poor (Table 1, entry 2). Cat-
alysts 3—6 having secondary amine functionality gave
only trace amount of conversion even after stirring for
120 h which may be accounted for the high steric crowd-
ing around the amine group of the catalysts.

The influences of the amount of catalyst loading and
addition of additive on a reaction were then examined.
15 mol% catalyst loading was found to be optimum,
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Table2. Monofunctional amine catalysed Michael addition reaction between cyclohexanone and p-methoxy-g-nitrostyrene.

o ozN\g o O,N
X NO2 Catalyst 1, rt /@/\é
MeO MeO MeO
syn anti

Entry  Catalyst 1 (mol%) Additive t (h)  Yield %* dr® (syn:antiy  ee® syn ee® anti
1 15 TFA 36 67 60:40 33 11
2 15 p-TsOH 120 <10 - -
3 15 HOAc 72 78 57:43 32 12
4 15 PhCOOH 36 86 88:12 89 65
5 20 PhCOOH 36 86 85:15 84 57
6 10 PhCOOH 48 76 82:18 79 59
7 5 PhCOOH 72 53 83:17 78 51
Reaction conditions: p-Methoxy-g-nitrostyrene (0.2 mmol), catalyst (15 mol%), additive (15 mol%) and cyclohexanone (0.8
mmol).
4Isolated yields.

bDiastereoselectivity was determined by 'HNMR of the crude product and validated with HPLC data.

“Determined by HPLC analysis.

while its decrease to 5 mol% and 10 mol% negatively
affected the reactivity as well as selectivity of the reac-
tion (Table 2, entries 6—7). On the other hand, increasing
the catalyst loading to 20 mol% remained essentially the
same as that of the reaction catalyzed by 15 mol% of
1, while the enantioselectivity decreased slightly from
91% ee to 84% ee. Addition of additives such as TFA,
HOACc and benzoic acids greatly enhanced the catalytic
performance, probably by accelerating the formation of
the enamine intermediate between the catalyst and the
substrate. In fact, use of 15 mol% catalyst 1 in the pres-
ence of 15 mol% of benzoic acid under solvent free
conditions was found to be optimum giving Michael
adducts in 86% yield with 88:12 diastereoselective ratio
and 89% enantiomeric excess in favour of the syn adduct
(Table 2, entry 4). It is inexplicable to note that addition
of p-TsOH deactivates the reaction as it gave the product
in less than 10% yield (Table 2, entry 2).

With the optimal reaction conditions in hand, the reac-
tion was carried out on a diverse range of substrates
to explore the general applicability of this asymmet-
ric transformation. As shown in Table 3 (entries 1-13),
high isolated yields were obtained for all the products,
regardless of the electronic nature of the aromatic sub-
stituents, and in most of the cases, syn products were
obtained as the major product with moderate to high
enantioselectivities.

When 1-[(E)-2-nitrovinyl]benzene was treated with
cyclohexanone and benzoic acid in the presence of D-
fructose derived 1,2:4,5-di- O-isopropylidene-3-amino-
3-deoxy-a-D-fructopyranose (1) as a catalyst, the prod-
uct 7a was obtained in 92% yield after 24 h of
stirring (Table 3, entry 1). When the same reaction

conditions were applied to the addition of cyclopen-
tanone to nitroolefins the time taken for completion of
the reaction was much shorter in comparison to those
with cyclohexanone (Table 3, entries 6-9). The reaction
of various nitroalkenes with acetone in the presence of
catalyst 1 showed excellent conversion with good enan-
tioselectivity, albeit taking longer time than in the cases
of cyclopentanone or cyclohexanone.

As far as the plausible mechanism of the reaction is
concerned, it may be noted that the secondary amine can
bind with carbonyl group to form iminium salt which
readily tautomerizes to nucleophilic enamine. On the
other hand, unless the enamine form is stabilized by fur-
ther conjugation, either with an electron-withdrawing
group® or an aromatic nucleus, or by other less def-
inite stabilizing factors, the reaction of primary amine
with carbonyl compound leads to unfavourable imine-
enamine equilibrium that prefers the less nucleophilic
imine form. Therefore, the use of monofunctional pri-
mary amine for stereoselective Michael addition poses
considerable challenge with respect to (a) the lack of an
activation site and stereodirecting group in the catalyst
(Figure 2) for the Michael acceptor which is attacked by
the Michael donor, i.e., the imine or enamine generated
from the reaction of ketone with the amine catalyst; (b)
formation of less reactive Michael donor in the form of
imine (Figure 4).

The fact that the reaction of primary amine with car-
bonyl compound favours the less nucleophilic imine
form, we carried out DFT calculation to see the sta-
bility of imine and enamine derived from the reaction
of cyclohexanone with the catalyst 1. To our pleasure, it
was observed that the enamine form 1b is more stable by
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Table 3. Asymmetric Michael addition reaction catalyzed by 1.

P Ar o Ar o

ar N0 % Catalyst 1, rt OZNM OZNM
b - : . .

r + {12 neat, PhCOOH H . H )

Syn anti
Entry Substrate Ketone  Product #«h)  %Yield® dr¢ %ee?
syn:anti

1 ©/\/N02 <:>:o 7a 24 92 69:31 92

2 E“\Ej/\/”02 <:>:o 7b 12 95 76:24 76

3 /@/\/NOZ < > o Tc 30 85 78:22 90
Me

4 J@/\VNOZ <:>:o 7d 36 86 88:12 89
MeO

5 /@A/NOZ <:>:o Te 10 96 59:41 78
Cl

6 ©/\/N02 > o 7f 7 93 69:31 99

7 Br\@/\/"‘o? O:o 7g 6 92 60:40 63

8 /@/\/NOZ O:O 7h 16 90 69:31 47
Me

9 J@/\VNOZ O:o 7i 20 87 69:31 79
MeO

10 ©/\/N02 )CJ)\ 7i 36 89 - 63

11 Br\@/\VNOZ )CJ)\ 7k 36 91 - 58

12 /@/\/NOZ Q 71 48 79 - 67
- PN

13 J@/\VNOZ Q 7m 48 77 - 80
MeO )J\

Reaction condition: Nitroolefin (0.2 mmol), catalyst 1 (15 mol%), PhCOOH (15 mol%) and ketones (0.8 mmol).
Tsolated yields.

bDiastereoselectivity was determined by ' HNMR of the crude product.

“Enantioselectivity of the syn-diastereomer was determined by chiral HPLC analysis.
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Figure 6. Plausible mechanism of syn-selectivity.

0.377 Kcal/mol®' than the imine form 1a (Figure 5). The
shift in imine-enamine equilibrium to more nucleophilic
enamine can be attributed to the lesser conformational
restriction in enamine form in comparison to the imine.

As for the plausible mechanism of syn-selectivity, a
tentative model representing the prototypical addition of
cyclohexanone to frans-B-nitrostyrene in the presence
of organocatalyst 1a might explain that the NH group of
the enamine interacts through hydrogen bonding with
the nitrogroup of the nitroalkene and enhances their
electrophilicity. The si-face approach to the nitroolefin,
where the plan of the nitroolefin lies below plane of
the enamine, generates syn-product while the re-face
approach to the nitroolefin may be less favourable
due steric interaction between the five-membered ace-
tonide ring with the substituent on the S-position of the
nitroolefin (Figure 6).

Khiangte Vanlaldinpuia et al.

In conclusion, we have reported for the first time
a stereoselective organocatalyst having only one acti-
vating group in the form of amine for asymmetric
Michael addition of ketones to nitroolefins. Given the
fact enamine derived from secondary amine is more
nucleophilic, the favourable imine-enamine equilib-
rium in primary amine derived enamine is explained
by DFT studies. While the D-Fructose derived pri-
mary amine, 1,2:4,5-di-O-isopropylidene-3-amino-3-
deoxy- a-D-fructopyranose (1) has been found to be
an effective catalyst for asymmetric Michael addition
of ketones to nitroolefins giving up to 96% yield,
88:12 dr and 89% ee,while its opposite stereoisomer (2)
was less reactive and selective under similar reaction
conditions. Interestingly, fructose derived secondary
amines 3, 4, 5 and 6 were found to be ineffective for
this transformation which may be due to steric hin-
drance.

Supporting Information

The spectroscopic data, "THNMR and '3CNMR spectra of
selected compounds, HPLC data and chromatogram, and
computational data etc., are available free of charge via the
Internet at http://www.ias.ac.in/chemsci.
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