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ON A TYPE OF SEMI-GENERALIZED RECURRENT P-SASAKIAN
MANIFOLDS

Archana Singh, J.P. Singh∗and Rajesh Kumar

Abstract. In the present paper we study some geometrical properties of semi-generalized
recurrent P-Sasakian manifolds.
keywords: Semi-generalized recurrentmanifold, P-Sasakianmanifolds, Concircular cur-
vature tensor, Einstein manifold,M-projective curvature tensor.

1. Introduction

The idea of recurrent manifolds was introduced by A.G. Walker in 1950 [16].
On the other hand, De and Guha [3] introduced generalized recurrent manifold
with the non-zero 1-form A and another non-zero associated 1-form B. Such a
manifold has been denoted by GKn. If the associated 1-form B becomes zero,
then the manifold GKn reduces to a recurrent manifold introduced by Ruse [12]
which is denoted by Kn. In 1977, Adati and Matsumoto [1] defined P-Sasakian and
Special Para Sasakianmanifolds, which are special classes of an almost para-contact
manifold introduced by Sato [13]. Para Sasakian manifolds have been studied by
De and Pathak [4], Matsumoto et.al. [8], Matsumoto [9], Shukla and Shukla [14],
Singh [15], De and Sarkar [5] and many others.

A Riemannian manifold (Mn, �) is called a semi-generalized recurrent manifold
if its curvature tensor R satisfies the condition

(∇XR)(Y,Z)W = A(X)R(Y,Z)W + B(X)�(Z,W)Y,(1.1)

where A and B are two 1-forms, B is non-zero, P1 and P2 are two vector fields such
that

�(X,P1) = A(X), �(X,P2) = B(X),(1.2)

for any vector field X and ∇ denotes the operator of covariant differentiation with
respect to the metric �.
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Generalizing the notion of recurrency the author Khan [6] introduced the notion
of generalized recurrent Sasakianmanifold. In the paper [11], B. Prasad introduced
the notion of semi-generalized recurrent manifold and obtained some interesting
results. Recently Rajesh Kumar et.al. [7] studied semi generalized recurrent LP-
Sasakian manifolds. Motivated by the above studies, in this paper we extend
the study of semi-generalized recurrent to Para-Sasakian manifolds. The paper
is organized as follows: Section 2, consist the basic definitions of P-Sasakian and
Einsteinmanifolds. In Section 3, we studied semi-generalized recurrentP-Sasakian
manifolds. In section 4, we prove that a semi-generalized φ-recurrent P-Sasakian
manifold is an Einstein manifold. Section 5 is devoted to the study of semi-
generalized concircular φ-recurrent P-Sasakian manifolds. Section 6 is about the
study of M-projective φ-recurrent P-Sasakian manifolds respectively. In the last
section we studied the three-dimensional locally semi-generalized φ-recurrent P-
Sasakian manifolds.

2. Introduction

Ann-dimensionaldifferentiablemanifoldMn is aPara-Sasakian (brieflyP-Sasakian)
manifold if it admits a (1,1) tensor field φ, a contravariant vector field ξ, a covariant
vector field η, and a Riemannian metric �, which satisfy

φ2X = X − η(X)ξ, �(X, ξ) = η(X), φξ = 0,(2.1)

�(φX, φY) = �(X,Y) − η(X)η(Y),(2.2)

(∇Xφ)Y = −�(X,Y)ξ− η(Y)X + 2η(X)η(Y)ξ,(2.3)

∇Xξ = φX,(2.4)

(∇Xη)(Y) = �(φX,Y) = �(φY,X),(2.5)

for any vectorfieldsX andY, where∇denotes covariant differentiationwith respect
to � ([1],[13]).

It can be seen that in a P-Sasakian manifold Mn with the structure (φ, ξ, η, �),
the following relations hold:

η(ξ) = 1, η(φX) = 0,(2.6)

rank(φ) = (n − 1).(2.7)

Further in a P-Sasakian manifold the following relations also hold:

η(R(X,Y)Z) = �(X,Z)η(Y) − �(Y,Z)η(X),(2.8)
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R(X,Y)ξ = η(X)Y − η(Y)X,(2.9)

R(ξ,X)Y = η(Y)X − �(X,Y)ξ,(2.10)

R(ξ,X)ξ = X − η(X)ξ,(2.11)

Qξ = −(n − 1)ξ,(2.12)

S(X, ξ) = −(n − 1)η(X),(2.13)

S(φX, φY) = S(X,Y) + (n − 1)η(X)η(Y),(2.14)

for any vector fields X, Y, Z, where R and S are the Riemannian curvature tensor
and Ricci tensor of the manifold respectively.
A P-Sasakian manifold Mn is said to be Einstein if the Ricci tensor S is of the form

S(X,Y) = λ�(X,Y),(2.15)

where λ is a constant.

3. Semi-Generalized Recurrent P-Sasakianmanifolds

Definition 3.1. ARiemannianmanifold (Mn, �) is semi-generalizedRicci recurrent
manifold ([3],[2]) if

(∇XS)(Y,Z) = A(X)S(Y,Z) + nB(X)�(Y,Z).(3.1)

Theorem 3.1. The scalar curvature r of a semi-generalized recurrent P-Sasakianmanifold
is related in terms of contact forms η(P1)and η(P2) as given by

r = − 1
η(P1)

[
(n2 + 2)η(P2) + 2(n − 1)η(P1)

]
.

Proof. Permutting equation (1.1) twice with respect to X, Y, Z; adding the three
equations and using Bianchi’s second identity, we have

A(X)R(Y,Z)W + B(X)�(Z,W)Y + A(Y)R(Z,X)W
+ B(Y)�(X,W)Z+ A(Z)R(X,Y)W + B(Z)�(Y,W)X = 0.(3.2)

Contracting (3.2) with respect to Y, we get

A(X)S(Z,W) + nB(X)�(Z,W) − �(R(Z,X)P1,W)
+ B(Z)�(X,W) − A(Z)S(X,W) + B(Z)�(X,W) = 0.(3.3)
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In view of S(Y,Z) = �(QY,Z), the equation (3.3) reduces to

A(X)�(QZ,W)+ nB(X)�(Z,W) − �(R(Z,X)P1,W)
+B(Z)�(X,W)− A(Z)�(QX,W) + B(Z)�(X,W) = 0.(3.4)

Factoring offW, we get from (3.4)

A(X)QZ + nB(X)Z − R(Z,X)P1

+ B(Z)X − A(Z)QX + B(Z)X = 0.(3.5)

Contracting (3.5) with respect to Z, we get

A(X)r + (n2 + 2)B(X) − 2S(X,P1) = 0.(3.6)

Putting X = ξ in the equation (3.6) and using the equations (1.2) and (2.13), we get

r = − 1
η(P1)

[
(n2 + 2)η(P2) + 2(n − 1)η(P1)

]
.

This completes the proof.

Theorem 3.2. In a semi-generalized Ricci-recurrent P-Sasakian manifold, the 1-form A
and B are related as

−(n − 1)A(X) + nB(X) = 0.

Proof. Taking Z = ξ in (3.1), we have

(∇XS)(Y, ξ) = A(X)S(Y, ξ) + nB(X)�(Y, ξ).(3.7)

The left hand side of (3.7), clearly can be written in the form

(∇XS)(Y, ξ) = ∇XS(Y, ξ) − S(∇XY, ξ) − S(Y,∇Xξ),
which in view of (2.4), (2.5) and (2.13) gives

−(n − 1)�(Y, φX)− S(Y, φX).

While the right hand side of (3.7) equals

A(X)S(Y, ξ) + nB(X)�(Y, ξ) = −(n − 1)A(X)η(Y)+ nB(X)η(Y).

Hence,

−(n − 1)�(Y, φX) − S(Y, φX) = −(n − 1)A(X)η(Y)+ nB(X)η(Y).(3.8)

Putting Y = ξ in (3.8) and then using (2.1), (2.6) and (2.13), we get

−(n − 1)η(φX) + (n − 1)η(φX) = −(n − 1)A(X) + nB(X),

Or,

−(n − 1)A(X) + nB(X) = 0.(3.9)
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Theorem 3.3. If a semi-generalized Ricci-recurrent P-Sasakian manifold is an Einstein
manifold then 1-forms A and B are related as λA(Y) + nB(Y) = 0.

Proof. For an Einstein manifold, we have S(Y,Z)=λ�(Y,Z) and (∇US)=0, where λ is
constant.
Hence from (3.6) we have

[λA(X) + nB(X)]�(Y,Z) + [λA(Y) + nB(Y)] �(Z,X)
+ [λA(Z) + nB(Z)] �(X,Y) = 0.(3.10)

Replacing Z by ξ in (3.10) and using (1.2) and (2.1), we have

[λA(X) + nB(X)] η(Y) + [λA(Y) + nB(Y)]η(X)
+
[
λη(P1) + nη(P2)

]
�(X,Y) = 0.(3.11)

Again, taking X=Y=ξ in (3.11) and using (1.2), (2.1) and (2.6), we have
[
λη(P1) + nη(P2)

]
= 0.(3.12)

Using (1.2) and (2.1) in the above relation, it follows that

λA(Y) + nB(Y) = 0.

4. Semi-Generalizedφ-Recurrent P-Sasakian manifolds

Definition 4.1. A P-Sasakian manifold (Mn, �) is called semi-generalized φ recur-
rent if its curvature tensor R satisfies the condition

φ2((∇WR)(X,Y)Z) = A(W)R(X,Y)Z + B(W)�(Y,Z)X,(4.1)

where A and B are two 1-forms, B is non-zero and these are defined by

A(W) = �(W,P1), B(W) = �(W,P2)(4.2)

and P1 and P2 are vector fields associated with 1-forms A and B, respectively.

Theorem 4.1. A semi generalizedφ-recurrent P-Sasakianmanifold (Mn, �) is an Einstein
manifold and moreover; the 1-forms A and B are related as (n − 1)A(W) = nB(W).

Proof. Let us consider a semi-generalized φ-recurrent P-Sasakian manifold. Then
by virtue of (2.1) and (4.1) we have

(∇WR)(X,Y)Z − η((∇WR)(X,Y)Z)ξ
= A(W)R(X,Y)Z + B(W)�(Y,Z)X.(4.3)



218 Archana Singh, J.P.Singh and R. Kumar

From which it follows that

�((∇WR)(X,Y)Z,U) − η((∇WR)(X,Y)Z)η(U)
= A(W)�(R(X,Y)Z,U)+ B(W)�(Y,Z)�(X,U).(4.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = U = ei in (4.4) and taking summation over i, 1 ≤ i ≤ n,
we get

(∇WS)(Y,Z) −
n∑
i=1

η((∇WR)(ei,Y)Z)η(ei)

= A(W)S(Y,Z) + nB(W)�(Y,Z).(4.5)

The second term of left hand side of (4.5) by putting Z = ξ takes the form
�((∇WR)(ei,Y)ξ, ξ), which is zero in this case. So, by replacing Z by ξ in (4.5)
and using (2.13), we get

(∇WS)(Y, ξ) = −(n − 1)A(W)η(Y)+ nB(W)η(Y).(4.6)

We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇WY, ξ) − S(Y,∇Wξ),
using (2.4), (2.5) and (2.13) in the above relation, it follows

(∇WS)(Y, ξ) = −(n − 1)�(φW,Y) − S(φW,Y).(4.7)

From (4.6) and (4.7) we obtain

−(n − 1)�(φW,Y) − S(φW,Y) = −(n − 1)A(W)η(Y)+ nB(W)η(Y).(4.8)

Replacing Y = ξ in (4.8) then using (2.1) and (2.6), we get

(n − 1)A(W) = nB(W).(4.9)

Using (4.9) in (4.8), we obtain

S(Y, φW) = −(n − 1)�(Y, φW).(4.10)

Again, replacing Y by φY both sides in the above equation (4.10) and using the
equations (2.2) and (2.14), we obtain

S(Y,W) = −(n − 1)�(Y,W),

i.e., the manifold is an Einstein manifold.
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5. Semi-Generalized Concircular φ-Recurrent P-Sasakianmanifolds

Definition 5.1. A P-Sasakian manifold (Mn, �) is called semi-generalized concir-
cular ϕ-recurrent if its concircular curvature tensor

C(X,Y)Z = R(X,Y)Z − r
n(n − 1)

[
�(Y,Z)X − �(X,Z)Y](5.1)

satisfies the condition

ϕ2((∇WC)(X,Y)Z) = A(W)C(X,Y)Z + B(W)�(Y,Z)X,(5.2)

where A and B are defined as (4.2) and r is the scalar curvature of the manifold
(Mn, �).

Theorem 5.1. Let (Mn, �) be a semi-generalized concircularϕ-recurrent P-Sasakianman-
ifold then [

−(n − 1) − r
n

]
A(W) + nB(W) = 0.

Proof. Let us consider a semi-generalized ϕ-recurrent P-Sasakian manifold. Then
by virtue of (2.1) and (5.2), we have

(∇WC)(X,Y)Z − η((∇WC)(X,Y)Z)ξ
= A(W)C(X,Y)Z + B(W)�(Y,Z)X,(5.3)

from which it follows that

�((∇WC)(X,Y)Z,U) − η((∇WC)(X,Y)Z)η(U)
= A(W)�(C(X,Y)Z,U)+ B(W)�(Y,Z)�(X,U).(5.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting Y = Z = ei in (5.4) and taking summation over i, 1 ≤ i ≤ n,
we get

(∇WS)(X,U) =
W(r)
n
�(X,U)− W(r)

n
η(X)η(U)

+ (∇WS)(X, ξ)η(U)+ nB(W)�(X,U)

+
[
S(X,U) − r

n
�(X,U)

]
A(W).(5.5)

Replacing U by ξ in (5.5) and using (2.1) and (2.13), we have[
−(n − 1) − r

n

]
A(W)η(X) + nB(W)η(X) = 0.(5.6)

Putting X = ξ in (5.6), we obtain[
−(n − 1) − r

n

]
A(W) + nB(W) = 0.

This completes the proof.
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Theorem 5.2. A semi-generalized concircular ϕ-recurrent P-Sasakian manifold is an
Einstein manifold.

Proof. Putting X = U = ei in (5.4) and taking summation over i, 1 ≤ i ≤ n, we get

(∇WS)(Y,Z) =
n∑
i=1

�((∇WR)(ei,Y)Z, ξ)�(ei, ξ)

+
W(r)
n
�(Y,Z) − W(r)

n(n − 1)
[
�(Y,Z) − η(Y)η(Z)]

+
[
S(Y,Z) − r

n
�(Y,Z)

]
A(W) + nB(W)�(Y,Z).(5.7)

Replacing Z by ξ in (5.7) and using (5.6), we have

(∇WS)(Y,Z) =
W(r)
n
η(Y).(5.8)

We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇WY, ξ) − S(Y,∇Wξ),
using (2.4), (2.5) and (2.13) in the above relation, it follows that

(∇WS)(Y, ξ) = −(n − 1)�(Y, φW) − S(Y, φW).(5.9)

In view of (5.8) and (5.9), we obtain

S(Y, φW) = −(n − 1)�(Y, φW)− W(r)
n
η(Y).(5.10)

Replacing Y by ϕY in (5.10) then using (2.2), (2.6) and (2.14), we obtain

S(Y,W) = −(n − 1)�(Y,W).

6. Semi-generalizedM-Projective ϕ-recurrent P-Sasakian manifolds

Definition 6.1. AP-Sasakianmanifold (Mn, �) is called semi-generalizedM-projective
curvature tensor [10]

W∗(X,Y)Z = R(X,Y)Z − 1
2(n − 1)

[S(Y,Z)X − S(X,Z)Y

+ �(Y,Z)QX − �(X,Z)QY].(6.1)

satisfies the condition

((∇VW∗)(X,Y)Z) − η((∇VW∗)(X,Y)Z)ξ
= A(V)W∗(X,Y)Z + B(V)�(Y,Z)X,(6.2)

whereA and B aredefined as (4.2) and r is a scalar curvature of themanifold (Mn, �).
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Theorem 6.1. Let (Mn, �) be a semi-generalized M-Projective ϕ-recurrent P-Sasakian
manifold then

−
[
n2 − n + r
2(n − 1)

]
A(V) + nB(V) = 0.

Proof. Let us consider a semi-generalized ϕ-recurrent P-Sasakian manifold. Then
by virtue of (2.1) and (6.2), we have

(∇VW∗)(X,Y)Z− η((∇VW∗)(X,Y)Z)ξ
= A(V)W∗(X,Y)Z + B(V)�(Y,Z)X,(6.3)

from which it follows that

�((∇VW∗)(X,Y)Z,U) − η((∇VW∗)(X,Y)Z))η(U)
= A(V)�(W∗(X,Y)Z,U) + B(V)�(Y,Z)�(X,U).(6.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the
manifold. Then putting Y = Z = ei in (6.4) and taking summation over i, 1 ≤ i ≤ n,
we get

n
2(n − 1)

(∇VS)(X,U) − 1
2(n − 1)

V(r)�(X,U)

− n
2(n − 1)

(∇VS)(X, ξ)η(U) +
1

2(n − 1)
V(r)η(X)η(U)

=

[
n

2(n − 1)
S(X,U) − r

2(n − 1)
�(X,U)

]
A(V)

+ nB(V)�(X,U).(6.5)

Replacing U by ξ in (6.5) and using (2.1) and (2.6), we have

−A(V)
[
n2 − n + r
2(n − 1)

]
η(X) + nB(V)η(X) = 0.(6.6)

Putting X = ξ in (6.6), we obtain

−
[
n2 − n + r
2(n − 1)

]
A(V) + nB(V) = 0.

This completes the proof.

Theorem 6.2. A semi-generalized M-Projective ϕ-recurrent P-Sasakian manifold is an
Einstein manifold.
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Proof. Putting X = U = ei in (6.4) and taking summation over i, 1 ≤ i ≤ n, we get

n
2(n − 1)

(∇VS)(Y,Z) =
n∑
i=1

�((∇VR)(ei,Y)Z, ξ)�(ei, ξ)

+
1

2(n − 1)
V(r)�(Y,Z)

− 1
2(n − 1)

[(∇VS)(Y,Z)�(ξ, ξ) − (∇VS)(ξ,Z)η(Y)
+ �(Y,Z)(∇VS)(ξ, ξ) − (∇VS)(Y, ξ)η(Z) ]
+

[
n

2(n − 1)
S(Y,Z) − r

2(n − 1)
�(Y,Z)

]
A(V)

+ nB(V)�(Y,Z).(6.7)

Replacing Z by ξ in (6.7) and using (2.1), (2.6) and (2.13), we have

(∇VS)(Y, ξ) = −1nV(r)η(Y).(6.8)

We know that

(∇VS)(Y, ξ) = ∇VS(Y, ξ) − S(∇VY, ξ) − S(Y,∇Vξ),
using (2.4), (2.5) and (2.13) in above relation, it follows that

(∇VS)(Y, ξ) = −(n − 1)�(Y, ϕV)− S(Y, ϕV).(6.9)

In view of (6.8) and (6.9)

S(Y, ϕV) = −(n − 1)�(Y, ϕV)+
1
n
V(r)η(Y).(6.10)

Replacing Y by ϕY in (6.10) then using (2.2) and (2.14), we get

S(Y,V) = −(n − 1)�(Y,V).

This completes the proof.

7. Three Dimensional Locally Semi-Generalizedϕ-recurrent P-Sasakian
manifolds

Theorem 7.1. The curvature tensor of three dimensional semi-generalized ϕ-recurrent
P-Sasakian manifold is given by

R(X,Y,Z) =
[
dr(ei)
2A(ei)

− B(ei)
A(ei)

]
�(Y,Z)X − dr(ei)

2A(ei)
�(X,Z)Y.
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Proof. In a three-dimensional Riemannian manifold (M3, �), we have

R(X,Y)Z = �(Y,Z)QX − �(X,Z)QY + S(Y,Z)X

− S(X,Z)Y +
r
2
[�(X,Z)Y − �(Y,Z)X],(7.1)

where Q is the Ricci operator, i.e., S(X,Y) = �(QX,Y) and r is the scalar curvature
of the manifold. Now putting Z = ξ in (7.1) and using (2.13), we get

R(X,Y)ξ = η(Y)QX − η(X)QY + (n − 1)[η(X)Y − η(Y)X]
+

r
2
[η(X)Y − η(Y)X].(7.2)

Using (2.9) in (7.2), we have
[
(2 − n) − r

2

]
[η(X)Y − η(Y)X] = η(Y)QX − η(X)QY.(7.3)

Putting Y = ξ in the equation (7.3) and using the equations (2.6) and (2.12), we get

QX =
[
(3 − 2n) − r

2

]
η(X)ξ −

[
(2 − n) − r

2

]
X.(7.4)

Therefore, it follows from (7.4) that

S(X,Y) =
[
(3 − 2n) − r

2

]
η(X)η(Y) −

[
(2 − n) − r

2

]
�(X,Y).(7.5)

Thus from (7.1), (7.4) and (7.5), we get

R(X,Y)Z =
[
2(2 − n) − r

2

]
[�(X,Z)Y − �(Y,Z)X]

+
[
(3 − 2n) − r

2

]
[�(Y,Z)η(X)ξ− �(X,Z)η(Y)ξ

+ η(Y)η(Z)X − η(X)η(Z)Y].(7.6)

Taking the covariant differentiation to the both sides of the equation (7.6), we get

(∇WR)(X,Y)Z = −dr(W)
2

[�(X,Z)Y − �(Y,Z)X + �(Y,Z)η(X)ξ
− �(X,Z)η(Y)ξ + η(Y)η(Z)X − η(X)η(Z)Y]
+
[
(3 − 2n) − r

2

] [
�(Y,Z)η)(X)− �(X,Z)η)(Y)] (∇Wξ)

+
[
(3 − 2n) − r

2

] [
�(Y,Z)ξ − η(Z)Y] (∇Wη)(X)

+
[
(3 − 2n) − r

2

] [
η(Y)X − η(X)Y] (∇Wη)(Z)

−
[
(3 − 2n) − r

2

] [
�(X,Z)ξ − η(Z)X] (∇Wη)(Y).(7.7)
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Noting, that we may assume that all vector fields X, Y, Z, W are orthogonal to ξ
and using (2.1), we get

(∇WR)(X,Y)Z = −dr(W)
2

[�(X,Z)Y − �(Y,Z)X]

+
[
(3 − 2n) − r

2

]
[�(Y,Z)(∇Wη)(X)

− �(X,Z)(∇Wη)(Y)]ξ.(7.8)

Applying ϕ2 to the both side of (7.8) and using (2.1) and (2.6), we get

ϕ2((∇WR)(X,Y)Z) =
dr(W)

2
[
�(Y,Z)X − �(X,Z)Y] .(7.9)

By (4.1), the equation (7.9) reduces to

A(W)R(X,Y)Z =
[
dr(W)

2
− B(W)

]
�(Y,Z)X − dr(W)

2
�(X,Z)Y.

PuttingW = {ei}, where i=1, 2, 3 is an orthonormal basis of the tangent space at any
point of the manifold and taking summation over i, 1 ≤ i ≤ 3, we obtain

R(X,Y)Z =
[
dr(ei)
2A(ei)

− B(ei)
A(ei)

]
�(Y,Z)X − dr(ei)

2A(ei)
�(X,Z)Y.

8. Conclusion

This paper is all about the study of geometrical properties of a semi generalized
recurrent Para-Sasakian manifold. We prove that a semi generalized φ−recurrent
Para-Sasakianmanifold is an Einsteinmanifold. It is also stabilised that a semi gen-
eralized M projective φ−recurrent Para-Sasakian manifold and semi generalized
concircular φ−recurrent Para-Sasakian manifolds are also Einstein manifold.
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