See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/373052880](https://www.researchgate.net/publication/373052880_ON_A_TYPE_OF_SEMI-GENERALIZED_RECURRENT_P-SASAKIAN_MANIFOLDS?enrichId=rgreq-9e547b4cfdbd5176c7c274a00cb9b249-XXX&enrichSource=Y292ZXJQYWdlOzM3MzA1Mjg4MDtBUzoxMTQzMTI4MTE4MDkyMjE2MUAxNjkxNzU1ODE1MTU0&el=1_x_2&_esc=publicationCoverPdf)

[ON A TYPE OF SEMI-GENERALIZED RECURRENT P-SASAKIAN MANIFOLDS](https://www.researchgate.net/publication/373052880_ON_A_TYPE_OF_SEMI-GENERALIZED_RECURRENT_P-SASAKIAN_MANIFOLDS?enrichId=rgreq-9e547b4cfdbd5176c7c274a00cb9b249-XXX&enrichSource=Y292ZXJQYWdlOzM3MzA1Mjg4MDtBUzoxMTQzMTI4MTE4MDkyMjE2MUAxNjkxNzU1ODE1MTU0&el=1_x_3&_esc=publicationCoverPdf)

Article in Facta Universitatis Series Mathematics and Informatics · February 2016

39 PUBLICATIONS **79** CITATIONS

[SEE PROFILE](https://www.researchgate.net/profile/Rajesh-Kumar-74?enrichId=rgreq-9e547b4cfdbd5176c7c274a00cb9b249-XXX&enrichSource=Y292ZXJQYWdlOzM3MzA1Mjg4MDtBUzoxMTQzMTI4MTE4MDkyMjE2MUAxNjkxNzU1ODE1MTU0&el=1_x_7&_esc=publicationCoverPdf)

0

FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 31, No 1 (2016), 213–225

ON A TYPE OF SEMI-GENERALIZED RECURRENT *P***-SASAKIAN MANIFOLDS**

Archana Singh, J.P. Singh∗**and Rajesh Kumar**

Abstract. In the present paper we study some geometrical properties of semi-generalized recurrent *P*-Sasakian manifolds.

keywords: Semi-generalized recurrent manifold, *P*-Sasakian manifolds, Concircular curvature tensor, Einstein manifold, *M*-projective curvature tensor.

1. Introduction

The idea of recurrent manifolds was introduced by A.G. Walker in 1950 [\[16\]](#page-13-0). On the other hand, De and Guha [\[3\]](#page-12-0) introduced generalized recurrent manifold with the non-zero 1-form *A* and another non-zero associated 1-form *B*. Such a manifold has been denoted by *GKn*. If the associated 1-form *B* becomes zero, then the manifold GK_n reduces to a recurrent manifold introduced by Ruse $[12]$ which is denoted by *Kn*. In 1977, Adati and Matsumoto [\[1\]](#page-12-1) defined *P*-Sasakian and Special Para Sasakian manifolds, which are special classes of an almost para-contact manifold introduced by Sato [\[13\]](#page-13-2). Para Sasakian manifolds have been studied by De and Pathak [\[4\]](#page-12-2), Matsumoto et.al. [\[8\]](#page-13-3), Matsumoto [\[9\]](#page-13-4), Shukla and Shukla [\[14\]](#page-13-5), Singh [\[15\]](#page-13-6), De and Sarkar [\[5\]](#page-13-7) and many others.

A Riemannian manifold (M^n, g) is called a semi-generalized recurrent manifold if its curvature tensor *R* satisfies the condition

$$
(1.1) \qquad (\nabla_X R)(Y, Z)W = A(X)R(Y, Z)W + B(X)g(Z, W)Y,
$$

where *A* and *B* are two 1-forms, *B* is non-zero, P_1 and P_2 are two vector fields such that

(1.2)
$$
g(X, P_1) = A(X), \quad g(X, P_2) = B(X),
$$

for any vector field *X* and ∇ denotes the operator of covariant differentiation with respect to the metric g .

Received August 21, 2015; Accepted November 1, 2015

²⁰¹⁰ *Mathematics Subject Classification.* Primary 53C25; Secondary 53C15 [∗] Corresponding author

Generalizing the notion of recurrency the author Khan [\[6\]](#page-13-8) introduced the notion of generalized recurrent Sasakian manifold. In the paper [\[11\]](#page-13-9), B. Prasad introduced the notion of semi-generalized recurrent manifold and obtained some interesting results. Recently Rajesh Kumar et.al. [\[7\]](#page-13-10) studied semi generalized recurrent *LP*-Sasakian manifolds. Motivated by the above studies, in this paper we extend the study of semi-generalized recurrent to Para-Sasakian manifolds. The paper is organized as follows: Section 2, consist the basic definitions of *P*-Sasakian and Einstein manifolds. In Section 3, we studied semi-generalized recurrent *P*-Sasakian manifolds. In section 4, we prove that a semi-generalized ϕ -recurrent *P*-Sasakian manifold is an Einstein manifold. Section 5 is devoted to the study of semigeneralized concircular φ-recurrent *P*-Sasakian manifolds. Section 6 is about the study of *M*-projective φ-recurrent *P*-Sasakian manifolds respectively. In the last section we studied the three-dimensional locally semi-generalized φ-recurrent *P*-Sasakian manifolds.

2. Introduction

An*n*-dimensional differentiable manifold*Mn* is a Para-Sasakian (briefly*P*-Sasakian) manifold if it admits a (1,1) tensor field ϕ , a contravariant vector field ξ , a covariant vector field η , and a Riemannian metric g , which satisfy

(2.1)
$$
\phi^{2} X = X - \eta(X)\xi, \quad g(X,\xi) = \eta(X), \quad \phi\xi = 0,
$$

(2.2)
$$
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),
$$

(2.3)
$$
(\nabla_X \phi)Y = -g(X, Y)\xi - \eta(Y)X + 2\eta(X)\eta(Y)\xi,
$$

$$
\nabla_X \xi = \phi X,
$$

(2.5)
$$
(\nabla_X \eta)(Y) = g(\phi X, Y) = g(\phi Y, X),
$$

for any vector fields *X* and *Y*, where ∇ denotes covariant differentiation with respect to $g([1],[13]).$ $g([1],[13]).$ $g([1],[13]).$ $g([1],[13]).$ $g([1],[13]).$

It can be seen that in a *P*-Sasakian manifold M^n with the structure (ϕ, ξ, η, g) , the following relations hold:

$$
\eta(\xi) = 1, \quad \eta(\phi X) = 0,
$$

$$
(2.7) \t rank(\phi) = (n-1).
$$

Further in a *P*-Sasakian manifold the following relations also hold:

$$
(\text{2.8}) \quad \eta(R(X, Y)Z) = g(X, Z)\eta(Y) - g(Y, Z)\eta(X),
$$

$$
R(X, Y)\xi = \eta(X)Y - \eta(Y)X,
$$

$$
R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi,
$$

$$
R(\xi, X)\xi = X - \eta(X)\xi,
$$

$$
Q\xi = -(n-1)\xi,
$$

(2.13)
$$
S(X, \xi) = -(n-1)\eta(X),
$$

(2.14)
$$
S(\phi X, \phi Y) = S(X, Y) + (n - 1)\eta(X)\eta(Y),
$$

for any vector fields *X*, *Y*, *Z*, where *R* and *S* are the Riemannian curvature tensor and Ricci tensor of the manifold respectively.

A *P*-Sasakian manifold *Mn* is said to be Einstein if the Ricci tensor *S* is of the form

$$
(2.15) \tS(X,Y) = \lambda g(X,Y),
$$

where λ is a constant.

3. Semi-Generalized Recurrent *P***-Sasakian manifolds**

Definition 3.1. A Riemannian manifold $(Mⁿ, g)$ is semi-generalized Ricci recurrent manifold $([3],[2])$ $([3],[2])$ $([3],[2])$ $([3],[2])$ $([3],[2])$ if

(3.1)
$$
(\nabla_X S)(Y,Z) = A(X)S(Y,Z) + nB(X)g(Y,Z).
$$

Theorem 3.1. *The scalar curvature r of a semi-generalized recurrent P-Sasakian manifold is related in terms of contact forms* $\eta(P_1)$ *and* $\eta(P_2)$ *as given by*

$$
r = -\frac{1}{\eta(P_1)} \left[(n^2 + 2)\eta(P_2) + 2(n - 1)\eta(P_1) \right].
$$

Proof. Permutting equation [\(1.1\)](#page-1-0) twice with respect to *X*, *Y*, *Z*; adding the three equations and using Bianchi's second identity, we have

$$
A(X)R(Y,Z)W + B(X)g(Z,W)Y + A(Y)R(Z,X)W
$$

(3.2) + B(Y)g(X,W)Z + A(Z)R(X,Y)W + B(Z)g(Y,W)X = 0.

Contracting [\(3.2\)](#page-3-0) with respect to *Y*, we get

(3.3)
$$
A(X)S(Z, W) + nB(X)g(Z, W) - g(R(Z, X)P_1, W)
$$

$$
B(Z)g(X, W) - A(Z)S(X, W) + B(Z)g(X, W) = 0.
$$

In view of $S(Y, Z) = g(QY, Z)$, the equation [\(3.3\)](#page-3-1) reduces to

(3.4)
$$
A(X)g(QZ, W) + nB(X)g(Z, W) - g(R(Z, X)P_1, W)
$$

$$
+ B(Z)g(X, W) - A(Z)g(QX, W) + B(Z)g(X, W) = 0.
$$

Factoring off *W*, we get from [\(3.4\)](#page-4-0)

(3.5)
$$
A(X)QZ + nB(X)Z - R(Z, X)P_1 + B(Z)X - A(Z)QX + B(Z)X = 0.
$$

Contracting [\(3.5\)](#page-4-1) with respect to *Z*, we get

(3.6)
$$
A(X)r + (n^2 + 2)B(X) - 2S(X, P_1) = 0.
$$

Putting $X = \xi$ in the equation [\(3.6\)](#page-4-2) and using the equations [\(1.2\)](#page-1-1) and [\(2.13\)](#page-3-2), we get

$$
r = -\frac{1}{\eta(P_1)} \left[(n^2 + 2)\eta(P_2) + 2(n - 1)\eta(P_1) \right].
$$

This completes the proof. \square

Theorem 3.2. *In a semi-generalized Ricci-recurrent P-Sasakian manifold, the 1-form A and B are related as*

$$
-(n-1)A(X) + nB(X) = 0.
$$

Proof. Taking $Z = \xi$ in [\(3.1\)](#page-3-3), we have

(3.7)
$$
(\nabla_X S)(Y,\xi) = A(X)S(Y,\xi) + nB(X)g(Y,\xi).
$$

The left hand side of [\(3.7\)](#page-4-3), clearly can be written in the form

$$
(\nabla_X S)(Y,\xi) = \nabla_X S(Y,\xi) - S(\nabla_X Y,\xi) - S(Y,\nabla_X \xi),
$$

which in view of (2.4) , (2.5) and (2.13) gives

$$
-(n-1)g(Y, \phi X) - S(Y, \phi X).
$$

While the right hand side of [\(3.7\)](#page-4-3) equals

$$
A(X)S(Y,\xi) + nB(X)g(Y,\xi) = -(n-1)A(X)\eta(Y) + nB(X)\eta(Y).
$$

Hence,

(3.8)
$$
-(n-1)g(Y, \phi X) - S(Y, \phi X) = -(n-1)A(X)\eta(Y) + nB(X)\eta(Y).
$$
Putting $Y = \xi$ in (3.8) and then using (2.1), (2.6) and (2.13), we get

$$
-(n-1)\eta(\phi X) + (n-1)\eta(\phi X) = -(n-1)A(X) + nB(X),
$$

Or,

(3.9)
$$
-(n-1)A(X) + nB(X) = 0.
$$

 \Box

Theorem 3.3. *If a semi-generalized Ricci-recurrent P-Sasakian manifold is an Einstein manifold then 1-forms A and B are related as* $\lambda A(Y) + nB(Y) = 0$.

Proof. For an Einstein manifold, we have $S(Y, Z) = \lambda g(Y, Z)$ and $(\nabla_U S) = 0$, where λ is constant.

Hence from [\(3.6\)](#page-4-2) we have

(3.10)
$$
[\lambda A(X) + nB(X)]g(Y, Z) + [\lambda A(Y) + nB(Y)]g(Z, X)
$$

$$
+ [\lambda A(Z) + nB(Z)]g(X, Y) = 0.
$$

Replacing *Z* by ξ in [\(3.10\)](#page-5-0) and using [\(1.2\)](#page-1-1) and [\(2.1\)](#page-2-2), we have

$$
[\lambda A(X) + nB(X)]\eta(Y) + [\lambda A(Y) + nB(Y)]\eta(X)
$$

(3.11)
$$
+ [\lambda \eta(P_1) + n\eta(P_2)]g(X,Y) = 0.
$$

Again, taking *X*=*Y*=ξ in [\(3.11\)](#page-5-1) and using [\(1.2\)](#page-1-1), [\(2.1\)](#page-2-2) and [\(2.6\)](#page-2-3), we have

$$
(3.12)\qquad [\lambda \eta(P_1) + n\eta(P_2)] = 0.
$$

Using [\(1.2\)](#page-1-1) and [\(2.1\)](#page-2-2) in the above relation, it follows that

$$
\lambda A(Y) + nB(Y) = 0.
$$

 \Box

4. Semi-Generalized φ**-Recurrent** *P***-Sasakian manifolds**

Definition 4.1. A *P*-Sasakian manifold (M^n, g) is called semi-generalized ϕ recurrent if its curvature tensor *R* satisfies the condition

(4.1)
$$
\phi^{2}((\nabla_{W}R)(X,Y)Z) = A(W)R(X,Y)Z + B(W)g(Y,Z)X,
$$

where *A* and *B* are two 1-forms, *B* is non-zero and these are defined by

(4.2)
$$
A(W) = g(W, P_1), B(W) = g(W, P_2)
$$

and *P*¹ and *P*² are vector fields associated with 1-forms *A* and *B*, respectively.

Theorem 4.1. A semi generalized ϕ -recurrent P-Sasakian manifold (Mⁿ, g) is an Einstein *manifold and moreover; the 1-forms A and B are related as* $(n - 1)A(W) = nB(W)$ *.*

Proof. Let us consider a semi-generalized φ-recurrent *P*-Sasakian manifold. Then by virtue of (2.1) and (4.1) we have

(4.3)
\n
$$
(\nabla_W R)(X, Y)Z - \eta((\nabla_W R)(X, Y)Z)\xi
$$
\n
$$
= A(W)R(X, Y)Z + B(W)g(Y, Z)X.
$$

From which it follows that

(4.4)
$$
g((\nabla_W R)(X, Y)Z, U) - \eta((\nabla_W R)(X, Y)Z)\eta(U)
$$

$$
= A(W)g(R(X, Y)Z, U) + B(W)g(Y, Z)g(X, U).
$$

Let $\{e_i\}$, $i = 1, 2, \dots n$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X = U = e_i$ in [\(4.4\)](#page-6-0) and taking summation over i, $1 \le i \le n$, we get

(4.5)
\n
$$
(\nabla_W S)(Y,Z) = \sum_{i=1}^n \eta((\nabla_W R)(e_i, Y)Z)\eta(e_i)
$$
\n
$$
= A(W)S(Y,Z) + nB(W)g(Y,Z).
$$

The second term of left hand side of (4.5) by putting $Z = \xi$ takes the form $g((\nabla_W R)(e_i, Y)\xi, \xi)$, which is zero in this case. So, by replacing *Z* by ξ in [\(4.5\)](#page-6-1) and using [\(2.13\)](#page-3-2), we get

(4.6)
$$
(\nabla_W S)(Y, \xi) = -(n-1)A(W)\eta(Y) + nB(W)\eta(Y).
$$

We know that

$$
(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi),
$$

using [\(2.4\)](#page-2-0), [\(2.5\)](#page-2-1) and [\(2.13\)](#page-3-2) in the above relation, it follows

(4.7)
$$
(\nabla_W S)(Y, \xi) = -(n-1)g(\phi W, Y) - S(\phi W, Y).
$$

From (4.6) and (4.7) we obtain

$$
(4.8) \qquad -(n-1)g(\phi W, Y) - S(\phi W, Y) = -(n-1)A(W)\eta(Y) + nB(W)\eta(Y).
$$

Replacing $Y = \xi$ in [\(4.8\)](#page-6-4) then using [\(2.1\)](#page-2-2) and [\(2.6\)](#page-2-3), we get

$$
(4.9) \qquad (n-1)A(W) = nB(W).
$$

Using (4.9) in (4.8) , we obtain

$$
(4.10) \tS(Y, \phi W) = -(n-1)g(Y, \phi W).
$$

Again, replacing *Y* by ϕ *Y* both sides in the above equation [\(4.10\)](#page-6-6) and using the equations (2.2) and (2.14) , we obtain

$$
S(Y, W) = -(n-1)g(Y, W),
$$

i.e., the manifold is an Einstein manifold. \square

On A Type of Semi-Generalized Recurrent *P*-Sasakian Manifolds 219

5. Semi-Generalized Concircular φ**-Recurrent** *P***-Sasakian manifolds**

Definition 5.1. A *P*-Sasakian manifold (M^n, g) is called semi-generalized concircular φ -recurrent if its concircular curvature tensor

(5.1)
$$
C(X, Y)Z = R(X, Y)Z - \frac{r}{n(n-1)} [g(Y, Z)X - g(X, Z)Y]
$$

satisfies the condition

(5.2)
$$
\varphi^{2}((\nabla_{W}C)(X,Y)Z) = A(W)C(X,Y)Z + B(W)g(Y,Z)X,
$$

where A and B are defined as (4.2) and r is the scalar curvature of the manifold (M^n, g) .

Theorem 5.1. Let (Mⁿ, g) be a semi-generalized concircular φ -recurrent P-Sasakian man*ifold then*

$$
\[-(n-1)-\frac{r}{n}\]A(W)+nB(W)=0.
$$

Proof. Let us consider a semi-generalized φ-recurrent *P*-Sasakian manifold. Then by virtue of (2.1) and (5.2) , we have

(5.3)
\n
$$
(\nabla_W C)(X, Y)Z - \eta((\nabla_W C)(X, Y)Z)\xi
$$
\n
$$
= A(W)C(X, Y)Z + B(W)g(Y, Z)X,
$$

from which it follows that

(5.4)
\n
$$
g((\nabla_W C)(X, Y)Z, U) - \eta((\nabla_W C)(X, Y)Z)\eta(U)
$$
\n
$$
= A(W)g(C(X, Y)Z, U) + B(W)g(Y, Z)g(X, U).
$$

Let $\{e_i\}$, $i = 1, 2, \dots n$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $Y = Z = e_i$ in [\(5.4\)](#page-7-1) and taking summation over $i, 1 \le i \le n$, we get

(5.5)
\n
$$
(\nabla_{W}S)(X, U) = \frac{W(r)}{n} g(X, U) - \frac{W(r)}{n} \eta(X)\eta(U) + (\nabla_{W}S)(X, \xi)\eta(U) + nB(W)g(X, U) + \left[S(X, U) - \frac{r}{n}g(X, U) \right] A(W).
$$

Replacing *U* by ξ in [\(5.5\)](#page-7-2) and using [\(2.1\)](#page-2-2) and [\(2.13\)](#page-3-2), we have

(5.6)
$$
\[-(n-1) - \frac{r}{n} \] A(W) \eta(X) + n B(W) \eta(X) = 0.
$$

Putting $X = \xi$ in [\(5.6\)](#page-7-3), we obtain

$$
\[-(n-1)-\frac{r}{n}\]A(W) + nB(W) = 0.
$$

This completes the proof. \square

Theorem 5.2. *A semi-generalized concircular* ϕ*-recurrent P-Sasakian manifold is an Einstein manifold.*

Proof. Putting $X = U = e_i$ in [\(5.4\)](#page-7-1) and taking summation over $i, 1 \le i \le n$, we get

(5.7)
\n
$$
(\nabla_{W}S)(Y, Z) = \sum_{i=1}^{n} g((\nabla_{W}R)(e_{i}, Y)Z, \xi)g(e_{i}, \xi) + \frac{W(r)}{n} g(Y, Z) - \frac{W(r)}{n(n-1)} [g(Y, Z) - \eta(Y)\eta(Z)] + [S(Y, Z) - \frac{r}{n}g(Y, Z)]A(W) + nB(W)g(Y, Z).
$$

Replacing *Z* by ξ in [\(5.7\)](#page-8-0) and using [\(5.6\)](#page-7-3), we have

(5.8)
$$
(\nabla_W S)(Y,Z) = \frac{W(r)}{n} \eta(Y).
$$

We know that

 $(\nabla_W S)(Y, \xi) = \nabla_W S(Y, \xi) - S(\nabla_W Y, \xi) - S(Y, \nabla_W \xi),$

using [\(2.4\)](#page-2-0), [\(2.5\)](#page-2-1) and [\(2.13\)](#page-3-2) in the above relation, it follows that

(5.9) $(\nabla_W S)(Y, \xi) = -(n-1)g(Y, \phi W) - S(Y, \phi W).$

In view of (5.8) and (5.9) , we obtain

(5.10)
$$
S(Y, \phi W) = -(n-1)g(Y, \phi W) - \frac{W(r)}{n} \eta(Y).
$$

Replacing *Y* by φ *Y* in [\(5.10\)](#page-8-3) then using [\(2.2\)](#page-2-4), [\(2.6\)](#page-2-3) and [\(2.14\)](#page-3-4), we obtain

$$
S(Y, W) = -(n-1)g(Y, W).
$$

6. Semi-generalized M-Projective ϕ**-recurrent** *P***-Sasakian manifolds**

Definition 6.1. A P-Sasakian manifold (M^n , g) is called semi-generalized M-projective curvature tensor [\[10\]](#page-13-11)

(6.1)
$$
W^{*}(X, Y)Z = R(X, Y)Z - \frac{1}{2(n-1)}[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY].
$$

satisfies the condition

(6.2)
$$
((\nabla_V W^*)(X, Y)Z) - \eta ((\nabla_V W^*)(X, Y)Z)\xi
$$

$$
= A(V)W^*(X, Y)Z + B(V)g(Y, Z)X,
$$

where A and B are defined as (4.2) and r is a scalar curvature of the manifold (M^n, g) .

Theorem 6.1. Let (Mⁿ, g) be a semi-generalized M-Projective φ-recurrent P-Sasakian *manifold then*

$$
-\left[\frac{n^2 - n + r}{2(n-1)}\right]A(V) + nB(V) = 0.
$$

Proof. Let us consider a semi-generalized φ-recurrent *P*-Sasakian manifold. Then by virtue of (2.1) and (6.2) , we have

(6.3)
$$
(\nabla_V W^*)(X, Y)Z - \eta((\nabla_V W^*)(X, Y)Z)\xi
$$

$$
= A(V)W^*(X, Y)Z + B(V)g(Y, Z)X,
$$

from which it follows that

(6.4)
$$
g((\nabla_V W^*)(X, Y)Z, U) - \eta((\nabla_V W^*)(X, Y)Z))\eta(U)
$$

$$
= A(V)g(W^*(X, Y)Z, U) + B(V)g(Y, Z)g(X, U).
$$

Let $\{e_i\}$, $i = 1, 2, \ldots n$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting *Y* = *Z* = e_i in [\(6.4\)](#page-9-0) and taking summation over *i*, 1 $\le i \le n$, we get

$$
\frac{n}{2(n-1)} (\nabla_V S)(X, U) - \frac{1}{2(n-1)} V(r)g(X, U)
$$

\n
$$
- \frac{n}{2(n-1)} (\nabla_V S)(X, \xi)\eta(U) + \frac{1}{2(n-1)} V(r)\eta(X)\eta(U)
$$

\n
$$
= \left[\frac{n}{2(n-1)}S(X, U) - \frac{r}{2(n-1)}g(X, U)\right]A(V)
$$

\n(6.5) + nB(V)g(X, U).

Replacing *U* by ξ in [\(6.5\)](#page-9-1) and using [\(2.1\)](#page-2-2) and [\(2.6\)](#page-2-3), we have

(6.6)
$$
-A(V)\left[\frac{n^2-n+r}{2(n-1)}\right]\eta(X)+nB(V)\eta(X)=0.
$$

Putting $X = \xi$ in [\(6.6\)](#page-9-2), we obtain

$$
-\left[\frac{n^2 - n + r}{2(n-1)}\right]A(V) + nB(V) = 0.
$$

This completes the proof. \square

Theorem 6.2. *A semi-generalized M-Projective* ϕ*-recurrent P-Sasakian manifold is an Einstein manifold.*

Proof. Putting $X = U = e_i$ in [\(6.4\)](#page-9-0) and taking summation over $i, 1 \le i \le n$, we get

$$
\frac{n}{2(n-1)} (\nabla_V S)(Y, Z) = \sum_{i=1}^n g((\nabla_V R)(e_i, Y)Z, \xi)g(e_i, \xi) \n+ \frac{1}{2(n-1)} V(r)g(Y, Z) \n- \frac{1}{2(n-1)} [(\nabla_V S)(Y, Z)g(\xi, \xi) - (\nabla_V S)(\xi, Z)\eta(Y) \n+ \frac{g(Y, Z)(\nabla_V S)(\xi, \xi) - (\nabla_V S)(Y, \xi)\eta(Z)] \n+ \left[\frac{n}{2(n-1)} S(Y, Z) - \frac{r}{2(n-1)} g(Y, Z)\right] A(V) \n(6.7) \n+ nB(V)g(Y, Z).
$$

Replacing *Z* by ξ in [\(6.7\)](#page-10-0) and using [\(2.1\)](#page-2-2), [\(2.6\)](#page-2-3) and [\(2.13\)](#page-3-2), we have

(6.8)
$$
(\nabla_V S)(Y, \xi) = -\frac{1}{n} V(r) \eta(Y).
$$

We know that

$$
(\nabla_V S)(Y, \xi) = \nabla_V S(Y, \xi) - S(\nabla_V Y, \xi) - S(Y, \nabla_V \xi),
$$

using [\(2.4\)](#page-2-0), [\(2.5\)](#page-2-1) and [\(2.13\)](#page-3-2) in above relation, it follows that

(6.9)
$$
(\nabla_V S)(Y, \xi) = -(n-1)g(Y, \varphi V) - S(Y, \varphi V).
$$

In view of (6.8) and (6.9)

(6.10)
$$
S(Y, \varphi V) = -(n-1)g(Y, \varphi V) + \frac{1}{n}V(r)\eta(Y).
$$

Replacing *Y* by φ *Y* in [\(6.10\)](#page-10-3) then using [\(2.2\)](#page-2-4) and [\(2.14\)](#page-3-4), we get

$$
S(Y, V) = -(n-1)g(Y, V).
$$

This completes the proof. \square

7. Three Dimensional Locally Semi-Generalized ϕ**-recurrent** *P***-Sasakian manifolds**

Theorem 7.1. *The curvature tensor of three dimensional semi-generalized* ϕ*-recurrent P-Sasakian manifold is given by*

$$
R(X, Y, Z) = \left[\frac{dr(e_i)}{2A(e_i)} - \frac{B(e_i)}{A(e_i)}\right] g(Y, Z)X - \frac{dr(e_i)}{2A(e_i)} g(X, Z)Y.
$$

Proof. In a three-dimensional Riemannian manifold (M^3, g) , we have

(7.1)
$$
R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y + \frac{r}{2} [g(X, Z)Y - g(Y, Z)X],
$$

where Q is the Ricci operator, i.e., $S(X, Y) = g(QX, Y)$ and r is the scalar curvature of the manifold. Now putting $Z = \xi$ in [\(7.1\)](#page-10-4) and using [\(2.13\)](#page-3-2), we get

(7.2)
$$
R(X,Y)\xi = \eta(Y)QX - \eta(X)QY + (n-1)[\eta(X)Y - \eta(Y)X]
$$

$$
+ \frac{r}{2}[\eta(X)Y - \eta(Y)X].
$$

Using [\(2.9\)](#page-3-5) in [\(7.2\)](#page-11-0), we have

(7.3)
$$
\left[(2-n) - \frac{r}{2} \right] [\eta(X)Y - \eta(Y)X] = \eta(Y)QX - \eta(X)QY.
$$

Putting $Y = \xi$ in the equation [\(7.3\)](#page-11-1) and using the equations [\(2.6\)](#page-2-3) and [\(2.12\)](#page-3-6), we get

(7.4)
$$
QX = \left[(3-2n) - \frac{r}{2} \right] \eta(X)\xi - \left[(2-n) - \frac{r}{2} \right] X.
$$

Therefore, it follows from [\(7.4\)](#page-11-2) that

(7.5)
$$
S(X,Y) = \left[(3 - 2n) - \frac{r}{2} \right] \eta(X)\eta(Y) - \left[(2 - n) - \frac{r}{2} \right] g(X,Y).
$$

Thus from [\(7.1\)](#page-10-4), [\(7.4\)](#page-11-2) and [\(7.5\)](#page-11-3), we get

$$
R(X,Y)Z = \left[2(2-n) - \frac{r}{2}\right][g(X,Z)Y - g(Y,Z)X] + \left[(3-2n) - \frac{r}{2}\right][g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y].
$$

Taking the covariant differentiation to the both sides of the equation [\(7.6\)](#page-11-4), we get

$$
(\nabla_{W}R)(X,Y)Z = -\frac{dr(W)}{2}[g(X,Z)Y - g(Y,Z)X + g(Y,Z)\eta(X)\xi
$$

\n
$$
- g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y]
$$

\n
$$
+ [(3-2n) - \frac{r}{2}][g(Y,Z)\eta)(X) - g(X,Z)\eta)(Y)](\nabla_{W}\xi)
$$

\n
$$
+ [(3-2n) - \frac{r}{2}][g(Y,Z)\xi - \eta(Z)Y](\nabla_{W}\eta)(X)
$$

\n
$$
+ [(3-2n) - \frac{r}{2}][\eta(Y)X - \eta(X)Y](\nabla_{W}\eta)(Z)
$$

\n(7.7)
\n
$$
- [(3-2n) - \frac{r}{2}][g(X,Z)\xi - \eta(Z)X](\nabla_{W}\eta)(Y).
$$

Noting, that we may assume that all vector fields *X*, *Y*, *Z*, *W* are orthogonal to ξ and using [\(2.1\)](#page-2-2), we get

$$
(\nabla_W R)(X, Y)Z = -\frac{dr(W)}{2}[g(X, Z)Y - g(Y, Z)X]
$$

+
$$
\left[(3 - 2n) - \frac{r}{2} \right] [g(Y, Z)(\nabla_W \eta)(X)
$$

(7.8)
$$
- g(X, Z)(\nabla_W \eta)(Y)]\xi.
$$

Applying φ^2 to the both side of [\(7.8\)](#page-12-4) and using [\(2.1\)](#page-2-2) and [\(2.6\)](#page-2-3), we get

(7.9)
$$
\varphi^2((\nabla_W R)(X, Y)Z) = \frac{dr(W)}{2} [g(Y, Z)X - g(X, Z)Y].
$$

By (4.1) , the equation (7.9) reduces to

$$
A(W)R(X,Y)Z = \left[\frac{dr(W)}{2} - B(W)\right]g(Y,Z)X - \frac{dr(W)}{2}g(X,Z)Y.
$$

Putting $W = \{e_i\}$, where $i=1, 2, 3$ is an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \le i \le 3$, we obtain

$$
R(X,Y)Z = \left[\frac{dr(e_i)}{2A(e_i)} - \frac{B(e_i)}{A(e_i)}\right]g(Y,Z)X - \frac{dr(e_i)}{2A(e_i)}g(X,Z)Y.
$$

 \Box

8. Conclusion

This paper is all about the study of geometrical properties of a semi generalized recurrent Para-Sasakian manifold. We prove that a semi generalized φ−recurrent Para-Sasakian manifold is an Einstein manifold. It is also stabilised that a semi generalized *M* projective φ−recurrent Para-Sasakian manifold and semi generalized concircular φ−recurrent Para-Sasakian manifolds are also Einstein manifold.

REFERENCES

- 1. T. ADATI and K. MATSUMOTO: On conformally recurrent and conformally symmetric *P-Sasakian manifolds*. Tru Math. **13** (1977), 25–32.
- 2. D. E. Blair: *Contact manifold in Riemannian Geometry*. Lecture notes in mathematics, Springer Verlag, (1976), 509.
- 3. U. C. De and N. Guha: *On generalized recurrent manifold*. J. Nat. Acad. Math. **9** (1991), 85–92.
- 4. U. C. De and G. Pathak: *On P-Sasakian manifolds satisfying certain conditions*. J. Indian Acad. Math. **16** (1994), 27–50.
- 5. U. C. De and A. Sarkar: *On a type of P-Sasakian manifolds*. Math. Reports, 11(61), **2** (2009), 139–144.
- 6. Quppus KHAN: On generalized recurrent Sasakian manifolds. Kyungpook Math. J. 44 (2004),167–172.
- 7. R. Kumar, J. P. Singh and J. Chowdhury: *On semi-generalized recurrent LP-Sasakian manifolds*. International Journal of Mathematics and Statistics Invention, **2** (2014), 63–66.
- 8. K. Matsumoto, S. Ianus and I. Mihai: *On a P-Sasakian manifolds which admit certain tensor fields*. Publ. Math. Debrecen, **33** (1986), 61–65.
- 9. K. Matsumoto: *Conformal Killing Vector fields in a P-Sasakian manifolds*. J. Korean Math. Soc. **14** 1(1977), 135–142.
- 10. G. P. Pokhariyal and R. S. Mishra: *Curvature tensor and their relativistic significance II*. Yokohama Mathematical Journal, **19** (1971), 97–103.
- 11. B. Prasad: *On semi-generalized recurrent manifold*. Mathematica Balkanica, New series, **14** (2000), 77–82.
- 12. H. S. Ruse: *A Classification of K*[∗] *space*. London Mathematical Society. **53** (1951), 212–229.
- 13. I. Sato: *On a structure similar to the almost contact structure*. Tensor, (N.S.). **30** (1976), 219–224.
- 14. S. S. Shukla and M. K. Shukla: *On* ϕ*-Symmetric Para-Sasakian manifolds*. Int. Journal of Math. Analysis,**4**, no. 16(2010), 761–769.
- 15. J. P. SINGH: *On Generalized o-recurrent and Generalized Concircularly* φ *-recurrent P-Sasakian manifolds*. Novi Sad J. Math. **44** (2014), 153–163.
- 16. A. G. Walker: *On Ruse's Spaces of Recurrent curvature*. Proc. London Math. Soc. **52** (1976), 36–64.

Archana Singh Department of Mathematics and Computer Science Mizoram University Tanhril-796004, Mizoram archanamath17@gmail.com

J.P. Singh Faculty of Mathematics Department of Mathematics and Computer Science Mizoram University Tanhril-796004, Mizoram jpsmaths@gmail.com

Rajesh Kumar Faculty of Mathematics Department of Mathematics Pachhunga University College, Aizawl, Mizoram-796001, INDIA Rajesh mzu@yahoo.com

[View publication stats](https://www.researchgate.net/publication/373052880)