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SEMI GENERALIZED ¢-RECURRENT TRANS-SASAKIAN
MANIFOLDS

Jagannath Chowdhury:I< Rajesh Kumar and Jay P. Singh

Abstract. In this paper we studied semi generalized (-recurrent and concircular ¢-
recurrent Trans-Sasakian manifolds.

keywords: Trans-Sasakian manifold, semi generalized ¢-recurrent, n-Einstein, -parallel,
constant curvature.

1. Introduction

In 1985, Oubina [3] introduced a class of almost contact metric manifolds known
as trans-Sasakian manifolds.This class contains a-Sasakian, S-Kenmotsu and co-
symplectic manifolds. An almost contact metric structure on a manifold M is
called a trans-Sasakian structure if the product manifold M x R belongs to the class
Wy, a class of Hermitian manifolds which are closely related to a locally conformal
Kahler manifolds. Trans-Sasakian manifolds were studied extensively by Marrero
[10], Tripathi [12], De et al.([5], [7], [8]) and others. Tripathi [12] proved that
trans-Sasakian manifolds are always generalized quasi-Sasakian. De et al. and
Bagewadi et al.([4], [1]) have obtained results on the conservativeness of Projective,
Pseudo projective, Conformal concircular, Quasi conformal curvature tensors on
k-contact,Kenmotsu and trans-Sasakian manifolds. De et al. [5] generalized the
notion of locally ¢-symmetric and introduced the notion of @-recurrent Sasakian
manifolds. The author Nagaraja [11] introduced the notion of p-recurrent trans-
Sasakian manifolds. In the present paper we study generalized p-recurrent and
concircular ¢-recurrent Trans-Sasakian manifolds.

2. Preliminaries

Let M be a n dimensional almost contact metric manifold [6] with an almost contact
metric structure (¢, &, n,g) where @, &, n are tensor fields on M of types (1,1),(1,0),
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(0,1) respectively and g is the Riemannian metric on M such that

(2.1) P =—I+ne& nE) =1, @€ =0, nop=0.
The Riemannian metric g on M satisfies the condition

(2.2) 9(eX,0Y) = g(X,Y) —n(X)n(Y),

(2.3) 9(X, oY) = —g(¢X,Y), g(X,§) =n(X),

for all X,Y € TM. An almost contact metric structure (¢, &,n,g9) in M is called
a trans-Sasakian structure [2] if the product manifold (M x R, J, G) belongs to the
class Wy where J is the complex structure on (M x R) defined by

(2.4 TN = (6X = 26 (X) ).

for all vector fields X on M and smooth functions A on (M x R) and G is the
product metric on (M x R). This may be expressed by the following condition [7]

(2.5) (Vxo)(Y) = a(g(X,Y) —n(Y)X) + B(g(¢X,Y)E —n(Y)pX),

where a and 8 are smooth functions on M. From (2.5), we have

(2.6) Vx€ = —a(pX) + (X, n(X)E)
and
(2.7) (Vxn)(Y) = —ag(pX,Y) + B(pX, ¢Y).

In an n-dimensional trans-Sasakian manifold, from (2.5) (2.6) (2.7), we can derive
7]

R(X,Y)¢ = (o8 =B)nY)X —n(X)Y)
+ 2aB(n(Y)pX —n(X)eY) — (Xa)pY
(2.8) + (Ya)pX — (XB)’Y + (YB)p* X,

(2.9) S(X,8) = {(n—1)(0® = 5%) = 8} n(X) — (n - 2)(XB) - (pX)a
and
(210) Q¢ = {(n—1)(a® - B2) — €8} € — (n — 2)grad + plgrada),

where R is the curvature tensor, S is the Ricci-tensor and r is the scalar curvature.
Also

(2.11) 9(QRX,)Y)=5(X,Y),
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where ) being the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci-tensor S.

When
(2.12) p(grada) = (n — 2)gradp,

then (2.9) and (2.10) reduces to

(2.13) S(X,8) = (n—1)(a? = B*)n(X),
and
(2.14) Q¢ = (n—1)(a® = B?)E.

A Sasakian manifold is said to be a ¢-recurrent manifold if there exists a non zero
1-form A such that

(2.15) O*(VwR)(X,Y)Z) = A(X)R(Y, Z)W

for all vector fields X,Y, Z, W orthogonal to &.
Further we have

(2.16) 208 + £a = 0.

3. Semi-generalized ¢-recurrent trans Sasakian Manifolds

Definition 3.1. A trans-Sasakian manifold (M™,g) is called semi-generalized -
recurrent if its curvature tensor R satisfies the condition

(3.1)  ¢* ((VWR)(X, Y)Z) = AW)R(X,Y)Z + BW)g(Y,Z)X,

for all X,Y, Z, W € TM, where A and B are two 1-forms, B is non zero and these
are defined by

(32) A(W) = g(W7 p1)7 B(W) = g(W7 p2)7

where p1, p2 being the vector fields associated to the 1-form A, B respectively.

Theorem 3.1. A semi-generalized p-recurrent trans-Sasakian manifold (M™,g)
satisfying o(grada) = (n — 2)gradf, is an Einstein manifold and more over the
1-forms A and B are related as

(n— 1)(a? — B2)A(W) +nB(W) = 0.
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Proof: Let us consider a semi-generalized (-recurrent trans-Sasakian manifold.
Then by virtue of (2.1) and (3.1) we have

(VwR)(X,Y)Z +n((VwR)(X,Y)Z)§
(3.3) = AW)R(X,Y)Z + B(W)g(Y, Z)X,

from which we get

- 9(VwR)(X,Y)Z,U) +n((VwR)(X,Y)Z)n(U)
(3.4) = AW)R(X,Y,Z,U)+BW)y(Y,2)g(X,U).
Let {e;}, i = 1,2,...,n be an orthonormal basis of the tangent space at any

point of the manifold. Then putting X = U = e; in (3.4) and taking summation
over i, 1 <1 < n, we get

~(VwS)(Y,2) + D> n(VwR)(e:,Y)Z)n(e:)

i=1
(3.5) = AW)S(Y,Z)+nBW)g(Y, Z).
The second term of (3.5) by putting Z = £ takes the form g((Vw R)(ei, Y)E, ;).
Consider
g((VWR) (61‘, Y)ga 6) = g(vWR(eza Y)ga 5) - g(R(vWezu Y)ga 6)

at p € M. Since {e;} is an orthonormal basis, so Vxe; =0 at p.
Using (2.1), (2.3) and (2.8), we have

G(Rles, Vi Y)EE) = 9((@2—62)(77(VWY)6i—n(ei)(VwY))

20B(n(VwY )pe; — nlei)p(VwY))
(VwYa)pe; — (eia)p(VwY)

(VwYB)%e: — (B (V). 5)
(3.7) = 0.

+ +

_|_

Using (3.7) in (3.6), we obtain
3.8)  g((VwR)(ei,Y)E, &) = g(VwR(ei, Y)E, &) — g(R(ei, Y)VwE,€).
Since (Vi g) = 0, we have
9(VwR(e;,Y)E, &) + g(R(ei, Y)E, Vwé) = 0,
which implies
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Using (2.6) in (3.9), we get

o(VwR)(enY)E ) = —g< (en Y. oe<pW+B(W—77(W)€))

o(Bles V)W + 507 —W)0).6)

( (ezu )5790 ) — (R(e“Y) W)
Bn(W)g(R(ei, Y)E, €) + ag(R(ei, Y)W, £)
Bg(R(ei, Y)W, &) + Bn(W)g(R(e;, Y)E, §)
0.

_|_

(3.10)
Replacing Z by £ in (3.5) and using (2.3),(2.13) and (3.10) we have
(3.11)  (VwS)(Y,&) =—[(n—1)(a® = B*)AW) + nB(W)] n(Y).
Now, we have

(VwS)(Y, &) = VwS(Y,§) = S(VwY,§) = S(Y, Vwg).
Using (2.6) and (2.13) in the above relation, it follows that

(VwS)(Y,€) = (n—1)(a® — B%)[—ag(eW,Y) + Bg(pY, oW)]
(3.12) +aS(Y, W) — S(Y, W) + (n — 1)B(® — B*)n(Y )n(W).

By virtue of (2.2), we obtain from (3.12) that

(VwS)(¥,6) = (n—1)(a®~ ) [~ag(Y,¢W) + Bg(Y,W)]
(3.13) + aSY, W) - pS(Y,W).

From (3.11) and (3.13), we have

(n —1)(a® = B*)[~ag(Y,oW) + Bg(Y, W)] + aS(Y, pW)
(3.14) - BS(Y,\W) = —[(n 1)(a® = B2)A(W) +nB(W)] n(Y).

Replacing Y = ¢ in (3.14) then using (2.1), (2.3), (2.12) and (2.13) we get
(3.15) (n —1)(a? — B AW) + nB(W) = 0.

Again replacing Y and W by ¢Y and oW respcetively in (3.14) and then using
(2.1), (2.3), (2.11), (2.12) and (2.14), we obtain

(3.16) SOV, W) = (n — 1)(e — F)g(V, W)
and
S(eY, W) = (n—1)(a” — f)g(eY, W).

Which proves the theorem.
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4. Semi-generalized concircular p-recurrent trans-Sasakian Manifolds

Definition 4.1. A trans-Sasakian manifold is said to be concircular p-recurrent
manifold if there exists a non zero 1-form A such that

(4.1) Y (VwO)(X,Y)Z) = AW)C(X,Y)Z,

for arbitrary vector fields X, Y, Z, W where C'is a concircular curvature tensor given
by

(4.2) C(X,Y)Z=R(X,Y)Z —

n(n—1)

where R is the curvature tensor and r is the scalar curvature.

[g(Ya Z)X _g(Xa Z)Y]v

Definition 4.2. A trans-Sasakian manifold is called a semi-generalized concircu-
lar @-recurrent if its concircular curvature tensor C' defined in (4.2) satisfies the
condition

(43)  PVwC)(X,Y,2) = AW)C(X,Y, Z) + BOW)g(Y, 2)X,
where A and B are defined as (3.2).

Theorem 4.1. Let (M",g) be a semi-generalized concircular p-recurrent trans-
Sasakian manifold then

(n—1)(a? - §2) — % A(W) +nB(W) = 0.
Proof:
Let (M™, g) be a semi-generalized concircular ¢-recurrent trans-Sasakian mani-

fold. Then by virtue of (2.1) and (4.3), we have
(4.4) — AW)C(X,Y, Z) + BW)g(Y, Z)X,
from which it follows that

- 9(VwO)(X,Y, 2),U) + n((Vw C)(X,Y, Z))n(U)
(4.5) = AW)g(C(X,Y, 2),U) + B(W)g(Y, Z)g(X,U).

Let {e;},i = 1,2,...,n be orthonormal basis of the tangent space at any point of
the manifold. Then putting Y = Z = ¢; in (4.5) and taking summation over i,
1 <4< n, we get

~(Tws)x,0)+ O

_w)

9(X, U) + (Vw S) (X, n(U)

n(X)n(U) = A(W)|S(X,U) ~ ~g(X,U)
(4.6) +nB(W)g(X,U).
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Replacing U by ¢ in (4.6) and using (2.1) and (2.13), we get
(A7) AW [(n=1)(e® = B2 = =] n(X) + nBOV)n(X) = 0.
Putting X = ¢ in (4.7), we have
r

(4.8) [(n 1) - 52— ﬂ A(W) +nB(W) = 0.

This completes the proof.
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Theorem 4.2. A semi-generalized concircular @-recurrent trans-Sasakian mani-

fold is an Einstein manifold, provided o and 3 are constants.

Proof: Putting X = U = ¢; in (4.5) and taking summation over ¢, 1 < i < n, we

get
= (VwS)(¥,2) == g((VwR)(e:, Y, 2), €)g(e:, €)
i=1
- Mg 2+ 0o 2) - nvyucz)
(4.9) + AW) [S(Y.2) = Lg(Y. 2)| +nBW)g(Y, 2).

Replacing Z by € in (4.9) and using (4.7), we have

(4.10) (VwS)(Y, ) =

W(r)
Y).
——n(Y)
Now, we have
(4.11) (VwS)(Y;€) = VwS(Y,€) = S(VwY, &) = S(Y, Vi §).
Using (2.6) and (2.9) in the above relation, it follows that

(VwS)(Y.€) = (n—1)(a® = B*)[~ag(eW.Y) + Bg(W,Y)]
(4.12) + aSY, W) - pS(Y,W).

In view of (4.10) and (4.12)

(n - 1)(a? — )[—ag(@W, Y) + Bg(W,Y)]
(1.13) + asew) - asrw) = Ly,
Replacing Y by ¢Y in (4.13) and using (2.2), we get

aS(pY, oW) + BS(pY, W)
(4.14) = (n—1)(a® = B*)[Bg(W,0Y) — ag(eW,¢Y)].
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Interchanging Y by W in (4.14) and by using the skew symmetry of ¢, we obtain

(4.15)

aS(eW,pY) = (n — Na(a® — %) g(eW, Y).

By skew symmetry of ¢ and using (2.9), we obtain

S(eW,¢Y) S(*W,Y)

= S(W,Y) = (n—1)(a® = B)n(W)n(Y).

Substituting this in (4.15), we get

(4.16)

SWY) = (n—1)(a” = B%)g(W,Y).

i.e M is an Einstein manifold. Hence the theorem is verified.

5. Conclusion

This paper is all about the study of geometrical properties of a semi-generalized
¢-recurrent trans-Sasakian manifold. We prove that a semi-generalized ¢-recurrent
trans-Sasakian manifold is an Einstein manifold. It is proved that a semi-generalized
concircular ¢-recurrent trans-Sasakian manifold is also an Einstein manifold.
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