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Abstract: We have presented a mathematical model using Ordinary Differential 
Equations to investigate the transmission of COVID-19. We included the parameter for 
the natural birth rate of the susceptibles, considering the fact that births take place each 
day. Taking into account that the infected population would have a higher death rate than 
the uninfected population, we used different parameters for the death rate of the 

uninfected and the infected population. We estimated an 0R  of approximately 2.9, 

meaning that on an average each patient has been spreading the infection to 2.9 other 
people. The values of the parameters of the model have been estimated based on available 
data and numerical illustration has been carried out to describe the transmission process. 
 
Keywords: Covid-19, SIR model, Ordinary differential equations. 
 

1. Introduction 
 
 Mathematical modelling has played a major role in understanding the dynamics 
of infectious diseases and their control. Modelling can be useful for studying 
epidemiological patterns, evaluating the effectiveness of interventions and forecasting 
epidemiological patterns [1, 2, 3]. Mathematical models have been used to understand the 
dynamics of HIV infection [4, 5] and the impact of awareness programs on the spread of 
HIV/AIDS [6, 7]. Bauchet al. [8] gives an overview of all SARS models during the period 
of the epidemic up to 2 years thereafter. Various routes of transmission of Ebola has also 
been studied using Mathematical models [20, 21, 22]. Mathematical models have also 
been used to study the two novel coronaviruses (CoVs), namely, the severe acute 
respiratory syndrome coronavirus (SARS-CoV) in 2002 that spread to 37 countries and 
the Middle East respiratory syndrome coronavirus (MERS-Cov) in 2012 that spread to 27 
countries [23, 24, 25, 26, 27, 28, 29, 30]. SARS-CoV caused more than 8000 infections 
and 800 deaths  [31] and MERS-CoV infected 2494 individuals and caused 858 deaths 
[32]. The prevailing COVID-19, by 12 May 2020 has spread to 212 countries and 
Territories around the world. It has infected 4,088,848 individuals and has caused 283,153 
deaths [33]. 
 The evolution and spread of COVID-19 have resulted in an international effort 
coordinated by the World Health Organization (WHO). On 31stDecember 2019, the WHO 
China Country Office was informed of cases of pneumonia unknown etiology detected in 
Wuhan City, Hubei Province of China. On 11thand 12th  January 2020, WHO received 
further detailed information from the National
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Health Commission China that the outbreak is associated with exposures in the seafood 
market in Wuhan City. The outbreak of the novel coronavirus, 2019-nCoV has been 
declared a public health emergency of international concern by the WHO on 30thJanuary 
2020 [35]. On 11thFebruary 2020, WHO announced the name COVID-19 for the new 
coronavirus disease. COVID-19 is a newly discovered infectious disease with a high 
potential for transmission to close contacts. As of 13thApril 2020, a total of 747,546 
confirmed cases were documented by WHO via case reporting forms received from 113 
countries, territories and areas across five different WHO regions and three international 
conveyances [36]. Control of the disease is mainly on prompt identification of cases and 
isolation of probable cases and their contacts. The rapid growth in the number of COVID-
19 cases set up a strong alarm to the government and people. Public health authorities, 
physicians and scientists all over the world run awareness campaign through social media 
to educate the public on COVID-19 prevention. The nationwide lockdown was declared 
in many countries. 
 Mathematical models have been used to study the dynamics of COVID-19 [37, 
38, 39, 40, 41, 42, 43, 44, 45]. Many authors have studied the early dynamics of the 
disease in Wuhan [46, 47, 48, 49, 50]. SIR model has been used by many authors to 
understand the dynamics of the disease. The natural birth rate of the human population 
has been ignored in most cases [48, 49, 50]. In our model, we have included the natural 
birth rate of the human population so that the actual decrease in the human population due 
to the disease may be projected. In most of the models, the death rate of all the 
populations is represented by one parameter. Here, considering the fact that the death rate 
of the infected population would be more than the death rate of the uninfected population, 
we have used separate parameters for the death rate of the uninfected population and the 
infected population.   
 

2. The Mathematical Model 
 
2.1. Formulation of the SIR Model: 
 
 We propose a SIR model to study the dynamics of COVID-19. In this model, we 
include the natural inflow of human population considering the fact that babies are born 
each day. This may give the image of the susceptible population, its decrease due to the 
disease and as and how the original population may be regained. We divide the human 
population into three classes, namely, the susceptible population which is denoted by S, 
the infected population which is denoted by I and the recovered population which is 
denoted by R. The total human population is denoted by N and N S I R   .  
 

dS I
N S S

dt N
            (1a) 

I

dI I
S I I

dt N
            (1b) 

dR
I R

dt
            (1c) 

 
We assume that except for the infected and recovered individuals, all other 

individuals are susceptible to the disease. We consider the inflow of the human population 
at the rate  . We suppose that the disease is transmitted at the rate   and the susceptible 

population dies at a constant natural death rate  . In most of the SIR models on COVID-
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19, the death rate of all the classes of the population is assumed to be the same. In our 
model, we assume different death rates for the infected population and uninfected 
population, considering the fact that the death rate of the infected population is higher 
compared to the death rate of the uninfected population. Thus, we assume that the 
infected population dies at a rate I . Since the recovered individual is free of the disease, 

we assume that they too die at the natural death rate  . Thus, we assume I  . Also, 

the infected individuals recover at the rate  and move to the recovered class. 

A schematic diagram of the model is provided in Figure 1. 
 

N    
I

N
      

      

        I    

   
 

Figure 1. A Schematic Representation of the SIR model including 
Demography. S, I and R represent the Total number of 
Susceptible, Infected and Recovered individuals in a 
Population.  is the Rate of Transmission of the disease and   

is the Recovery Rate.   is the Death Rate of the Susceptible 

and Recovered Population and I  is the Death Rate of the 

Infected Population. 
 
2.2 Determination of the Steady States. 
 
 Consider 

0
I

N S S
N

             (2a) 

0I

I
S I I

N
             (2b) 

0I R            (2c) 

 

Theorem 2.2.1. The disease-free steady state is ( , 0, 0)E S , where 
N

S



 . 

Proof.   At the disease-free state, 0I  and 0R  . With these in equation (2a), 
we have 

 
N

S



 . 

 

Theorem 2.2.2. The endemic steady state is ( , , )E S I R   
, where IS N

 


 
 , 

 
1

I

N
I

 

   


 
  

 
and 

 
I

I

N
R

    

     


 
   

 
. 

R I S  
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Proof.   From equation (2b), we have IS N
 


 
  

  From equation (2a), we have 
 

1
I

N
I

 

   


 
  

 
 

  Also, since N S I R     , we get 

 
I

I

N
R

    

     


 
   

 
. 

 
2.3. The Basic Reproduction Number 
 

 The basic reproduction number, 0R , is an important quantity in disease modelling 

and is generally defined as the average number of secondary infections arising from 
primary infection in an entirely susceptible population. 

 For 0I   , that is, for the disease to prevail, we need 
 

1
I



  



. We take 

this ratio as the basic reproduction ratio. Therefore, we define 
 0

I

R


  



 . 

 
2.4. Stability Analysis 
 
Theorem 2.4.1. The disease-free state ( , 0, 0)E S is locally asymptotically stable when 

0 1R  . 

Proof. The Jacobian matrix of the system at the disease-free state ,0,0
N

E




 
 
 

is 

    

0

0 0

0

I

N

J E

 




 



 

  
 
 
 

   
 

 
  

 

 ( , 0, 0)E S is locally asymptotically stable if 
 

1
I



  



that is, if 0 1R  . 

 

Theorem 2.4.2. The endemic steady state ( , , )E S I R   
 is locally asymptotically stable 

when 0 1R  . 

Proof.  The Jacobian matrix of the system at the endemic steady state ( , , )E S I R   
is 
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   

0

0

0

I

I S

N N

I S
J E

N N

  

   

 

 

 


 
   
 
 

   
 

 
 
 

 

The characteristic equation is 

 
1 2

3 4

5 6

0

0 0

0

a a

f a a

a a



 





  



 

where 1

I
a

N
 

 
   

 
, 2

S
a

N




  , 3

I
a

N




 ,  4 I

S
a

N
  



   , 5a  , 

6a    

that is 
3 2

1 2 3 0A A A       

where  1 1 4 6A a a a     

 2 1 4 1 6 4 6 2 3A a a a a a a a a     

 3 2 4 6 1 5 6A a a a a a a   

By Routh-Hurwitz criteria, ( , , )E S I R   
is locally asymptotically stable if 1 0A  , 

2 0A  , 3 0A  and 1 2 3 0A A A  . 

The above criterion are satisfied under the condition that 
 

1 0
I



  
 


which gives 

0 1R  . 

 
2.5. Positivity and Boundedness of solutions. 
 
 The SIR model given by the system (1) describes a human population, therefore, 
it is necessary to prove that the populations (susceptible, infected and recovered) are 

positive for all time, 0t  . That is, all solutions of the system (1) with non-negative 

initial data will remain positive for any 0t  . 
 

Theorem 2.5.1. Let the initial data be   00 0S S  ,   00 0I I  and  0 0R  . 

Then the components of the solution  S t ,  I t and  R t of system (1) are positive for 

all time 0t  . 

Proof.  Let the initial conditions be   00 0S S  ,   00 0I I  and  0 0R  .  

Suppose for   0S t  for some time 0t t and   0I t  ,   0R t   . 

From system (1),  

0
dS I

N S S
dt N

      when ( ) 0S t  . 
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which shows that the component of the solution ( )S t  will be non-negative for all 0t  .  

Now, to show that the component ( )I t of the solution will be non-negative for all 0t  , 

we assume ( ) 0I t   for some time 0t t , ( ) 0S t  , ( ) 0R t  and show that 0
dI

dt
 . 

Considering the system (1) 

0I

dI I
S I I

dt N
      when ( ) 0I t   

which shows that the component of the solution ( )I t  will be non-negative for 0t  . 

Finally, to show that the component of the solution ( )R t stays positive for all time, we 

assume ( ) 0R t  for some time 0t t , ( ) 0S t  , ( ) 0I t  and show that 0
dR

dt
 . 

From system (1), 

0
dR

I R
dt

    when ( ) 0I t   

since the constant recovery rate  is positive, the solution ( )R t will be non-negative for 

all time 0t  , which  completes the proof. 
 The boundedness of the components of the solution ( )S t , ( )I t and ( )R t follows 

from the fact that ( ) ( ) ( ) ( )N t S t I t R t   and that ( )S t , ( )I t and ( )R t are non- 

negative for all time 0t  . Therefore we have that each component of the solution is at 

most equal to N . That is ( ), ( ), ( ) ( )S t I t R t N t for all 0t  . Since each component of 

the solution is non-negative at the outbreak of the disease  0t  . This implies that each 

component of the solution ( )S t , ( )I t and ( )R t is bounded between zero and the total 

population size N . 
 

3. Numerical Simulation 
  
 For numerical validation of our model, we take the total population of the world 
as 759.43 crores [51]. For the initial values of the model variables, we use the data of 

COVID-19 as on 20th April 2020, where the total number of infected, 0 2,480,503I  , 

the number of recovered is 0 646,328R   so that the susceptible population, 

0 7,591,819,000S   [52]. The values of the parameters of the model are given in Table 

1. 
 

Table 1. Values of Parameters for COVID-19 Model 
 

Parameter Description Value Source 
  
 
  

 
  

 
 

I  

Natural birth rate  
 
Natural death rate  
 
Rate of transmission of 
the disease 
 
Death rate due to the 
disease  

18.5 per 1000 in a year = 0.00005 
1day  

 
7.7 per 1000 in a year = 0.00002 

1day  

 

0.187 
1day  

 

[53] 
 
[53] 
 
 
fitted 
 
[53] 
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  

 

 
Recovery rate 

0.067 
1day  

 

0.16 
1day  

 
[49] 

 

 Using these parameter values, we estimated the basic reproduction number 0R  to 

be 2.8681, which is approximately 2.9, which means that on an average each patient has 
been spreading the infection to 3 other people. Using the values of the parameters given in 
Table 1 and taking the data of 20th April 2020 as the initial value, we estimated the total 
number of infected for 30 days. It is shown in figure 2 that this estimation matches with 
the data of 20th may 2020 [52]. Also, we estimated the total number of recovered 
population for 30 days as is shown in figure 3. As per the Worldometer report of 20th May 
2020, the total number of infected is 5,076,964 and the total number of recovered is 
2,018,814. Figure 4 shows the estimated number of infected population 60 days after 20th 
April 2020. 
 

 
 

Figure 2. The Dynamics of the Infected Population with 0 2,480,503I  . 
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Figure 3. The Dynamics of the Recovered Population with 0 646,328R  . 

 

 
 

Figure 4. The Dynamics of the Infected Population taking a duration of 60 

days with 0 2,480,503I  . 
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Figure 5. The behavior of the infected population with different values of the 
rate of transmission  . 

 

 
 

Figure 6. Comparison of the behavior of the infected population with 
different death rates. It is seen that when the death rate of the 
infected population is the same as the death rate of the 
uninfected population, the number of infected population 
increases. 
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Figure 7. Dynamics of the Susceptible Population with different values of 
Normal Birth Rate. It is seen that if the normal birth rate increases, 
then the total population of susceptibles would increase.  

 

4.  Conclusion 
  
 We presented an SIR mathematical model describing the transmission dynamics 
of COVID-19. We included the parameter for the natural birth rate of the susceptible 
considering the fact that births take place each day. Taking into account that the infected 
population would have a higher death rate than the uninfected population, we used 
different parameters for the death rate of the uninfected and the infected population. 
Assuming that once a person recovered, he/she is free of the disease, we have taken the 
death rate of the recovered population to be the same as the uninfected population. We 
determined the two steady states, namely, the disease-free steady state and the endemic 

steady state. We defined the basic reproduction 0R . We found that the disease-free steady 

state is locally asymptotically stable when 0 1R   and the endemic steady state is locally 

asymptotically stable when 0 1R  . We have shown the positivity and boundedness of the 

solutions. Numerical simulation of the model is carried out using available resources for 
estimating the values of the parameters. We have taken the data of 20th April 2020 as the 
initial condition and studied the dynamics of the model. It is seen that the estimated 
number of infected population and the recovered population after a duration of 30 days is 
relatively same as the real data of 20th May 2020. It is shown that the infected population 
would decrease as the rate of transmission decreases. This shows that interventions such 
as social distancing and lock-downs would have great impact on reducing the spread of 
the disease. We have shown that if the death rate of the infected population is the same as 
the death rate of the uninfected population, then the number of infected would be more 
than the real data. Further, it is shown that if the natural birth rate may be increased, then 
the loss in the human population may be reduced. 
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