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Abstract 

Frailty model is a survival model designed to account for 

unobserved heterogeneity in the population. In this paper, we 

propose a new shared frailty model based on log-logistic as 

baseline distribution. The Bayesian approach of Markov 

Chain Monte Carlo (MCMC) technique was employed to 

estimate the parameters involved in the models. A simulation 

study was performed to compare the true values and the 

estimated values of the parameters. Comparison of different 

proposed models was done by using Bayesian comparison 

techniques. We apply to real life data set related to kidney 

infection due to insertion of catheter and the better model is 

suggested. 

Keywords: Bayesian comparison, gamma frailty, inverse 

Gaussian frailty, log-logistic distribution, mixture frailty 

model, MCMC. 

 

1. INTRODUCTION 

In shared frailty model, the individuals in the same group 

suppose to have common frailty, which is share by an 

individuals or pair of organs. Frailty is an unobserved 

covariate, which is random and is responsible for the 

dependence between the failure times of the study subjects 

and heterogeneity in the population. But, most researchers 

used to neglect such type of unobserved covariates and does 

not know the important role plays in the interpretation of the 

covariates effects. That is why, the absence of frailty term 

may lead to the misinterpretation of the outcomes or results. 

Clayton(1978) proposed useful way to introduce such type of 

neglected covariates. Vaupel et al.(1979) first used frailty 

term as an unobserved quantity in the study of the mortality of 

the population. 

According to Keyfitz and Littman (1979) in the study of 

mortality among heterogeneous population, it is observed that 

calculation of life expectancy from know death rate while 

ignoring heterogeneity may not give correct outcome. Vaupel 

et al.(1979) drawn to the same conclusion by using a 

continuous mixture model. In frailty model, the frailty term V 

and baseline hazard function r0(y) can not be separated since 

in a cluster level, the frailty is incorporated with the baseline 

hazard in multiplicative manner. Yin and Ibrahim (2005) 

proposed a new additive frailty model under the assumption 

that frailty has multiplicative effect on the baseline hazard. 

The hazard function for time y > 0 is given as 

r(y|X, v) = r0(y)v + X’β  (1.1) 

where r0(y), β and X are the baseline hazard function, 

regression coefficients and known covariates. This can be 

expressed in another way as 

r(y|X, v) = r0(y)v + eX’β  (1.2) 

This is the special case of the more general class of shared 

frailty model (Clayton, 1978). The more interesting situation 

is that when there are infinite number of covariates, some 

heterogeneity is still present in the study population. 

Assuming that known covariates and frailty are additive in 

nature. The combined effect of known and unknown 

covariates has a multiplicative effect on the baseline hazard. 

The hazard function for a given frailty V = v at time y > 0 is 

r(y|X) = r0(y)(v + eX’β)  (1.3) 

where β is the regression coefficient associated with known 

covariate. Then, the cumulative hazard function is written as 

R(y|X) = R0(y)(v + eX’β)  (1.4) 

Where R0(y) is the cumulative hazard function for the time y 

> 0. The conditional survival function given frailty V is given 

as 

S(y|v) = 𝑒−[𝑅0(𝑦)(𝑣+𝑒𝑋′𝛽)]  (1.5) 

The marginal survival function can be obtained by integrating 

over the range of frailty variable V having the probability 

density function as f(v) and is given by 

S(y) = 𝑒−𝑅0(𝑦)𝑒𝑋′𝛽
Lv[R0(y)]  (1.6) 

where Lv(.) is the Laplace transformation of the frailty 

variable v. 

When v = 0, frailty distribution is degenerated for all 

individuals. Under this condition, a mixture frailty model 

reduces to proportional hazard model. Since, the mathematical 

expression of Gamma distribution can be easily derived, it is 

most commonly used frailty distribution. The shared gamma 

frailty models were first recommended by Clayton (1978) for 

the examination of the relationship between clustered survival 

times in the study of disease transmission due to hereditary. 

The advantage is that, without covariates, its scientific 

properties are helpful for estimation (Oakes 1982). But it also 

has some limitations (Kheri 2007),whereby inverse Gaussian 

distribution is popularly used as frailty distribution for the 

parametric model. Similarities are also observed between 

frailty distribution and age of survivors as time increases in 

inverse Gaussian distribution. Further, inverse Gaussian 

distribution is more flexible than gamma for modeling of the 
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survival data. When there are more failures at the beginning of 

life time distribution and non-monotonic failures rate is 

expected, the inverse Gaussian model is more appropriate for 

the life time model. Gamma and inverse Gaussian distribution 

are more attractive because the unconditional survival 

function and hazard function can be expressed as simple 

closed form. 

In this manuscript, we considered right censored data with 

gamma and inverse Gaussian as the frailty distributions and 

log-logistic distribution (LLD) as the baseline distribution to 

explore the salient features of the shared gamma frailty and 

shared inverse Gaussian frailty models. Here the dependency 

between the survival times is due to the frailty parameter of 

gamma and inverse Gaussian distributions. The degree of 

heterogeneity of the study population depends on the value of 

the frailty distribution variance. Larger variance of frailty 

distribution implies more heterogeneity in the population. 

When frailty distribution has zero variance, it is said to have 

degenerate distribution. The Log logistic distribution is 

chosen as baseline distribution due to flexibility property of 

the functional form. 

Generally, classical approach and Bayesian approach are two 

commonly used techniques. Here, we adopt Markov Chain 

Monte Carlo(MCMC) method under Bayesian technique to 

estimate the model parameters as the prior distribution can be 

used, different properties of posterior distribution can be 

easily derived, interpretation of the results become easier and 

model choice criteria can be formulated. We also presented a 

simulation study to check the performance of models. All the 

estimation procedure and models comparison are illustrated 

with infectious disease data related to kidney infection. 

In sections 2 and 3, introduction of a mixture shared frailty 

models and baseline distribution are given, followed by 

proposed models and estimation strategies in section 4 and 

section 5. In section 6, the proposed models are illustrated 

with simulation study. Application to real life data and 

discussion of the results are given in sections 7 and 8. 

 

2. SHARED FRAILTY MODELS 

Suppose there are n individuals under consideration in the 

study. Let (y1q, y2q) be the first and second survival time of the 

pth (p = 1; 2) component of qth (q = 1; 2; :::; n) individual. 

Then, the conditional hazard function and conditional survival 

function for (y1q, y2q) given unobserved covariates vq are 

respectively, 

r(ypq|vq, X) = r0(ypq)(vq + ηq)  (2.1) 

S(ypq|vq, X) = e-[R0(ypq)(vq+ηq)]  (2.2) 

where ηq = 𝑒𝑋𝑞𝛽
. Under the assumption of independence, the 

bivariate survival function for the given frailty Vq = vq at time 

y1q > 0 and y2q > 0 is 

S(y1q, y2q|vq,Xq) = e-[(R01(y1q)+R02(y2q))(vq+ηq)]  (2.3) 

By integrating the conditional survival function with respect 

to the frailty variable Vq having the probability density 

function f(v), we obtained the unconditional survival function 

as 

S(y1q, y2q | Xq) =∫ 𝑒−[𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞)(𝑣𝑞+𝜂𝑞)]
𝑉𝑞

fv(vq)dvq 

= 𝑒−[𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞)]𝜂𝑞LVq [R01(y1q) + R02(y2q)]       (2.4) 

Where LVq (.) is the Laplace transform of the frailty variable 

of Vq for qth individual. Here onwards S(y1q,y2q|Xq) expressed 

as S(y1q, y2q). 

Here, we consider gamma distribution and inverse Gaussian 

distribution as frailty distributions with parameters ζ and ξ 

having probability density functions as 

𝑓(𝑣) = {

1

𝜉

1
𝜉𝑣

1
𝜉
−1

𝑒

−𝑣
𝜉

Γ
1
𝜉

   ; 𝑣 > 0, 𝜉 > 0

0                  ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.5) 

 

𝑓(𝑣) = {[
1

2𝜋𝜁
]
1
2
𝑣−3

2 𝑒
(𝑣−𝜉)2

2𝑣𝜁𝜉2   ; 𝑣 > 0, 𝜁 > 0, 𝜉 > 0

0                  ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.6) 

For the identifiability of the distributions, the expected value 

of the distribution is assumed to be one and having finite 

variance. Under this condition and by using Laplace 

transformation, the unconditional bivariate survival functions 

of mixture shared frailty models for the qth individual becomes 

S (y1q, y2q) = 𝑒−[𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞)𝜂𝑞][1 + ξ(R01(y1q) + R02(y2q))]-1/ξ  

  (2.7) 

S (y1q, y2q) = 

𝑒−(𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞))𝜂𝑞𝑒𝑥𝑝 [
1−(1+2𝜉(𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞)))1/2

𝜉
] (2.8) 

where R01(y1q) and R02(y2q) are the cumulative baseline hazard 

functions of the lifetime Y1q and Y2q. 

When the frailty is absent in the model and is called as 

without frailty model. In this case, the model becomes 

S (y1q, y2q) = 𝑒−(𝑅01(𝑦1𝑞)+𝑅02(𝑦2𝑞))𝜂𝑞  (2.9) 

 

3. BASELINE DISTRIBUTION 

The baseline consider is log-logistic distribution because of 

the important properties. Generally it is used when the rate of 

events of interest increases initially, after reaching some peak 

values it declines afterward. Langlands et al. (1979) given 

example in the study of breast cancer where highest mortality 

observed three years later and having the hazard function for 

time Y as 

𝑟(𝑦) =
𝜆
𝛼(

𝑦
𝛼)

𝜆−1

1+(
𝑦
𝛼)

𝜆    ; y>0, α > 0, λ > 0 

The corresponding cumulative hazard function and survival 

functions are respectively, 

R(y) = [1 − (𝑦

𝛼
)
𝜆
] ; y> 0, α > 0, λ > 0   (3.1) 
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S(y) = [1 − (𝑦

𝛼
)
𝜆
]
−1

 ; y>0, α > 0, λ > 0 (3.2) 

where α and λ are the parameters of the log-logistic 

distribution. The reality of the distribution is that the 

cumulative distribution function can be expressed in a closed 

form, which is especially beneficial for evaluation of survival 

data with censoring (Bennett, 1983). The shape of parameter 

of log-logistic distribution is very akin to the log-normal 

distribution but is more suited for the evaluation of the 

survival data. This is due to the fact of its greater 

mathematical tractability when dealing with the censored 

observations which show up regularly in such data. 

 

4. PROPOSED MODELS 

The unconditional survival function is obtained by replacing the cumulative hazard functions of log-logistic distribution in 

equations (2.7), (2.8) and (2.9). Then, 

S(y1q, y2q) =𝑒
−(𝑙𝑛[1−(

𝑦1𝑞
𝛼1

)
𝜆1

]+𝑙𝑛[1−(
𝑦2𝑞
𝛼2

)
𝜆2

])𝜂𝑞
 [1 + 𝜉 (𝑙𝑛 [1 − (

𝑦1𝑞

𝛼1
)

𝜆1
] + 𝑙𝑛 [1 − (

𝑦2𝑞

𝛼2
)

𝜆2
])]

−1/𝜉

    (4.1) 

S(y1q, y2q) = 𝑒
−(𝑙𝑛[1−(

𝑦1𝑞
𝛼1

)
𝜆1

]+𝑙𝑛[1−(
𝑦2𝑞
𝛼2

)
𝜆2

])𝜂𝑞
𝑒[

 
 
 
 
 
 
1−(1+2𝜉(𝑙𝑛[1−(

𝑦1𝑞
𝛼1

)
𝜆1

]+𝑙𝑛[1−(
𝑦2𝑞
𝛼2

)
𝜆2

]))

1/2

𝜉

]
 
 
 
 
 
 

      (4.2) 

S(y1q, y2q) = 𝑒
−(𝑙𝑛[1−(

𝑦1𝑞
𝛼1

)
𝜆1

]+𝑙𝑛[1−(
𝑦2𝑞
𝛼2

)
𝜆2

])𝜂𝑞
          (4.3) 

The equations (4.1) and (4.2) are mixture shared gamma frailty model and mixture shared inverse Gaussian frailty model under 

log-logistic baseline distribution, called as model-I and model-II. Equation (4.3) is a model without frailty and called as model-III. 

 

5. ESTIMATION STRATEGIES 

The likelihood function can be obtained by blending the failure times of the qth individuals (q = 1,2,3,…,n) and censoring times 

(d1q, d2q) by assuming independence between censoring scheme and individuals lifetimes and is given by 

𝐿 (𝜓, 𝛽, 𝜉) = ∏ 𝑓1(𝑦1𝑞 , 𝑦2𝑞)
𝑛1
𝑞=1 ∏ 𝑓1(𝑦1𝑞 , 𝑑2𝑞)

𝑛2
𝑞=1 ∏ 𝑓1(𝑑1𝑞 , 𝑦2𝑞)

𝑛3
𝑞=1 ∏ 𝑓1(𝑑1𝑞 , 𝑑2𝑞)

𝑛4
𝑞=1  (5.1) 

where  𝜓, 𝛽 and ξ are vectors of baseline parameters, regression coefficients and frailty distribution parameter. The likelihood 

function for without frailty is given as 

𝐿 (𝜓, 𝛽) = ∏ 𝑓1(𝑦1𝑞 , 𝑦2𝑞)
𝑛1
𝑞=1 ∏ 𝑓1(𝑦1𝑞 , 𝑑2𝑞)

𝑛2
𝑞=1 ∏ 𝑓1(𝑑1𝑞 , 𝑦2𝑞)

𝑛3
𝑞=1 ∏ 𝑓1(𝑑1𝑞 , 𝑑2𝑞)

𝑛4
𝑞=1  (5.2) 

where n1, n2, n3 and n4 are the random number of observations observed to lie in the range (y1q, y2q) lie in the ranges y1q < d1q; y2q 

< d2q; y1q < d1q; y2q > d2q; y1q > d1q; y2q < d2q and y1q > d1q; y2q > d2q respectively and the contribution of the qth individual in the 

likelihood function as 

𝑓1(𝑦1𝑞 , 𝑦2𝑞) =
𝜕2𝑆(𝑦1𝑞 , 𝑦2𝑞)

𝜕𝑦1𝑞𝜕𝑦2𝑞

 

𝑓2(𝑦1𝑞 , 𝑑2𝑞) = −
𝜕𝑆(𝑦1𝑞 , 𝑑2𝑞)

𝜕𝑦1𝑞

 

𝑓3(𝑑1𝑞 , 𝑦2𝑞) = −
𝜕𝑆(𝑑1𝑞 , 𝑦2𝑞)

𝜕𝑦2𝑞

 

       𝑓4(𝑑1𝑞 , 𝑑2𝑞) = 𝑆(𝑑1𝑞 , 𝑑2𝑞)      (5.3) 

Replacing the survival function in equation (5.3) and differentiating it, we get the likelihood functions given in equations (5.1) and 

(5.2). The first expression is a likelihood function for a mixture shared frailty model and second expression is likelihood function 

for without frailty model. 

The joint posterior density of the parameters given failure times is given as 

𝜋 (𝛼1, 𝜆1, 𝛼2, 𝜆2, 𝜉, 𝛽) ∝ 𝐿 (𝛼1, 𝜆1, 𝛼2, 𝜆2, 𝜉, 𝛽) × 𝑔1(𝛼1)𝑔2(𝜆1)𝑔3(𝛼2)𝑔4(𝜆2)𝑔5(𝜉)∏𝑝𝑖(𝛽𝑖)

5

𝑖=1
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where gi(.) (i = 1, 2,…, 5) indicates the prior density function 

with known hyper parameters of corresponding arguments for 

baseline parameters and frailty variance; pi(.) is prior density 

function for regression coefficient βi; 𝛽𝑖 represents a vector of 

regression coefficients except βi, i = 1, 2,…, a and likelihood 

function L(.) is given by equations (5.1) or (5.2). Here it is 

assumed that all the parameters are independently distributed. 

The expression of the likelihood function in equations (5.1) 

and (5.2) are not easy to solve by using Newton-Raphson 

method. MLEs fail to converge as it involved large number of 

parameters. Therefore, Bayesian approach was utilized to 

estimate the parameters involved in the models, which does 

not endure any such kind of troubles. 

Prior distributions are used as follows - gamma distribution 

with mean 1 and large variance Γ(Ψ, Ψ) is used as prior 

distribution for frailty parameter with a small value of Ψ. 

Normal distribution with mean zero and large variance say Φ2 

is used as prior for the regression coefficient. The same type 

of prior distributions considered in Ibrahim et al. (2001) and 

Sahu et al. (1997) and non-informative prior assumed as the 

baseline parameters since we do not have any information 

about the baseline parameters. Γ(a1, b1) and U(a2, b2) are used 

as non-informative prior distributions. All the hyper-

parameters Ψ, Φ, a1, a2, b1 and b2 are assumed to be known. 

Here Γ(a1, b1) represents gamma distribution with shape 

parameter a1 and scale parameter b1 and U(a2, b2) is the 

uniform distribution over the interval a2 to b2. We set hyper-

parameters as  Ψ = 0:0001, Φ2 =1000,  a1 = 1, b1 = 0:0001, 

a2 = 100, and b2 = 100. 

To estimate the parameters in the models fitted with the above 

prior density function and likelihood equations (5.1) and (5.2), 

Metropolis Hasting Algorithm and Gibbs Sampler was 

utilized. The convergence of the Markov chain to a stationary 

distribution is also observed by Geweke test and Gelman-

Rubin Statistics as suggested by Geweke (1992) and Gelman 

et al. (1992). To check the behavior of the chain, to decide 

burn-in period and autocorrelation lag, we used trace plots, 

coupling from the past plots and sample autocorrelation plots 

respectively. 

To decide the model which provides the best fit to the dataset, 

model comparison was done by using Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC) and 

Deviance Information Criteria (DIC) and Bayes factor. 

Suppose there are P parameters in a model and n observations 

in a dataset. AIC, BIC and DIC are elucidated as 

AIC = -2log 𝐿(𝑦|𝜃̃ ) + 2𝑃    (5.4) 

BIC = -2log 𝐿(𝑦|𝜃̃ ) + log(𝑛) 𝑃    (5.5) 

DIC = -2log 𝐿(𝑦|𝜃̃ ) + 2𝑃𝐷    (5.6) 

where 𝑃𝐷 = E[2log L(y|θ)] -2log 𝐿(𝑦|𝜃̃ ) 

Smaller values of AIC, BIC and DIC for the models are 

considered as better models than higher values. 

Bayes factor also employed for selection of Model Mu against 

Model Mv and defined as 

𝐵𝐹𝑢𝑣 =
𝑃(𝑦|𝑀𝑢)

𝑃(𝑦|𝑀𝑣)
       (5.7) 

Where 

P(y|Mk) = ∫𝑃(𝑦|Ω,𝑀𝑘)𝜋(Ω|𝑀𝑘)𝑑Ω 

where Ω represents the number of unknown parameters, 

𝜋(Ω|𝑀𝑘) is the density of prior distribution. 

In spite of the fact that, 2logBFuv is roughly equal to the 

differences in the values of BIC for the given models, we 

utilized the strategy given by Kass and Raftery (1995), to 

compute P(y|M) from the MCMC sample gotten from each of 

the model parameters. 

𝑃(𝑦|𝑀) = (
∑ 𝐿(𝑦|Ω𝑘)−1𝑁

𝑘=1

𝑁
)

−1

 

where Ωk and N symbolize sample and sample size of 

posterior distribution. 

A value of 2logBFuv more than 10 shows that a very strong 

confirmation to favour model Mu over model Mv, whereas a 

value between 0 and 2 is adequate to prove to favour any of 

the model. A value between 2 and 6 or 6 and 10 shows a mild 

or strong confirmation respectively, to favor the numerator 

model. 

 

6. SIMULATION STUDY 

To examine the performance of the Bayesian estimation 

method a simulation study was carried out. Only one covariate 

X1 was considered for the simulation purpose and was 

assumed to follow binomial distribution for Model I and 

Model II. Since we do not have any prior information about 

the baseline parameters, α1, λ1, α2 and λ2, the prior 

distributions are assumed to be at. We consider two different 

non-informative prior distributions for the baseline 

parameters, one is G(a1, a2) and another is U(b1, b2). All the 

hyper-parameters a1, a2, b1, and b2 are known. Here G(a, b) is 

the gamma distribution with the shape parameter a and the 

scale parameter b and U(b1, b2) represent the uniform 

distribution over the interval b1 to b2. For Model I, we set α1 = 

65, λ1 = 1.3, α2 = 65, λ2 = 1.3, ξ = 0.12, and β = - 0.13 and 

censoring distribution as the exponential distribution with the 

parameter 0.05 each. For Model II, we set α1 = 65, λ1 = 1.4, α2 

= 60, λ2 = 1.3, ξ = 0.11, and β = -0.22 and censoring 

distribution as the exponential distribution with the parameter 

0.05 each. We assume the value of the hyper-parameters as a1 

= 1, a2 = 0:0001, b1 = 0, and b2 = 100. As the Bayesian 

strategies are time consuming, fifty sets of lifetimes were 

generated utilizing inverse transform procedure. Both the 

chains were iterated for 100000 times. Gelman-Rubin scale 

reduction factor values were very close to one and p-values 

for Geweke test values were huge, which sufficiently 

demonstrates that the chains achieve stationary distribution for 

both the prior sets. Further the convergence rate was not 

enormously diverse. There was no impact of prior distribution 

on posterior summaries because estimates of parameters were 
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about the same. Table 2, and 3 present the posterior 

summaries of mixture shared gamma frailty and mixture 

shared inverse Gaussian frailty models with log-logistic 

baseline distribution. It provides estimates (posterior means), 

standard errors and upper and lower credible limits. 

 

7. APPLICATION IN REAL LIFE DATA 

The applicability of the models was checked by applying them 

to the infectious disease data related to infection of kidney 

that happens during insertion of catheter(McGilchrist and 

Aisbett, 1991). It consists of the first and second recurrence 

time of infection from the use of catheters using portable 

dialysis equipment for 38 patients. These two times of 

infection are grouped together for each patient in a cluster. 

The other relevant information are censoring time of infection, 

age of patients, gender (0 for male and 1 for female), disease 

types such as Glomerulo Nephritis(GN), Acute Nephritis 

(AN) and Polycystic Kidney Disease (PKD). 

First, Kolmogorov Smirnov test was used to check the 

goodness of fit for kidney infection data and the p-values 

obtained for the first and second recurrences are large enough 

to say that there is no reason to reject the hypothesis that the 

first and second recurrence time to follow the log-logistic 

distribution in the univariate case, we assume to be valid for 

the bivariate case also. The corresponding p-values are given 

in Table 1.  

As in simulation study, we run two parallel chains for all 

models using two sets of prior distributions with the different 

starting points using the Metropolis-Hastings algorithm and 

the Gibbs sampler based on normal transition kernels. We 

iterate both the chains for 100000 times. As seen in the 

simulation study here also we got nearly the same estimates of 

parameters for both the set of prior, so estimates are not 

dependent on the different prior distributions. The 

convergence rate of the Gibbs sampler for both the prior sets 

is almost the same. Also both the chains shows somewhat 

similar results, so we present  here the analysis for only one 

chain with G(a1, b1) as prior for the baseline parameters, for 

all the models. We are also calculate Gelman Rubin statistic 

values and Geweke test statistics values to check the 

convergence of Markov chain to a stationary distribution. 

Gelman Rubin statistics values are closed to one, Geweke test 

statistics values are closed to zero and their corresponding p-

values are large enough to say that the chains attains 

stationary distribution. Trace plots and coupling from the past 

plots given in Figures 1 and 2. The largest values of GR 

statistics are 1.0045, 1.0003 and 1.0013, which indicating that 

6400, 8200 and 7700 iterations would be satisfactory burn-in-

period. Autocorrelation plot used to decide autocorrelation lag 

and the convergence of the chain to a stationary distribution 

also confirm by running mean plot given in Figures 3 and 4. 

The estimate of parameters (posterior mean), standard error, 

credible limits are given in Tables 4, 5 and 6. Since the 

credible intervals does not contains zero, all the factors are 

significant. The positive value of β1 indicates that age is 

significant factors for infection of kidney, as age increases 

chance of infection also increase. Negative value of β2 shows 

that female has a lower chance of infection than male. 

Another significant factors, which have higher chance of 

infection are disease types such as Glomerulo Nephritis(β3), 

Acute Nephritis (β4) and Polycystic Kidney Disease (β5). 

When the variances of shared frailty term under gamma 

distribution are compare for both the models, it appears that 

the estimate of the variances tend to be overestimated for the 

existing shared gamma frailty model. 

The better model as per AIC, BIC and DIC values is model-I, 

since it has lower values of AIC, BIC and DIC than model-II 

and model-III under log-logistic baseline distribution which is 

given in Table 7. But the distinction between AIC, BIC, and 

DIC values for model-I, model-II and model-III are small, 

AIC, BIC, and DIC values may not be enough to differentiate 

the models. Presently, we consider Bayes factor for 

comparing a pair of models u and v. The values in Table 8 

shows that model-I is better than model-II and model-III as 

the corresponding value of 2log(Buv) are greater than 2 and 10 

indicating that there is mild and very strong confirmation to 

favor model-I than model-II and model-III for the given 

dataset, which affirm our earlier results given in Table 7. 

Hence from all the demonstrated comparison criteria we can 

say model-I (mixture shared gamma frailty model) is better 

than model-II and model-III that is mixture shared inverse 

Gaussian frailty model and without frailty model under log-

logistic distribution as baseline for modeling kidney infection 

data. 

 

8. DISCUSSION 

In this study, we examine a new mixture shared gamma and 

inverse Gaussian frailty models and existing shared frailty 

models under the same log-logistic baseline distribution. 

The Metropolis-Hastings and Gibbs sampler was utilized to fit 

all the proposed models. Kidney infection data was analyzed 

using the proposed models and the finest model is suggested. 

We have utilized self-composed programs in R statistical 

software to perform the analysis. 

All the demonstrated comparison criteria exhibits that a 

mixture shared gamma frailty model with log-logistic baseline 

is better for modeling of kidney infection data than mixture 

shared inverse Gaussian frailty model and without frailty 

model under the same baseline distribution. The estimates of 

frailty parameters are high in all models which are 0.0186 and 

0.0190 for mixture shared gamma frailty model and mixture 

shared in verse Gaussian frailty model respectively. This 

indicates that there is a strong evidence that heterogeneity is 

present among the patients. A few patients are anticipated to 

be exceptionally inclined to infection compared to others with 

the same covariate values. We can further establish that there 

is a strong positive relationship between the two infection 

times for the same patient. So, we have a new model called a 

mixture shared gamma frailty model to analyse kidney 

infection data. We compare with shared gamma frailty model 

and shared inverse frailty model based on the same baseline 

distribution. It is observe and worth to mention that our 

proposed models perform better than under log-logistic as 

baseline distribution proposed by Hanagal and sharma (2012) 

and Hanagal and Sharma (2015). 
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Appendix : Tables and Figures 

Table 1: Simulation under mixture shared gamma frailty model 

Parameter Estimates Standard 

Error 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

Geweke 

Values 

P 

Values 

Gelman and 

Rubin values 

burn in period = 5800; autocorrelation lag = 210 

α1(66.82) 

λ1(98.66) 

α2(1.12) 

λ2(1.40) 

ξ(0.018) 

β(-0.13) 

66.8165 

98.6500 

1.1167 

1.4045 

0.0183 

-0.1272 

0.3266 

0.5755 

0.0547 

0.0557 

0.0060 

0.0602 

66.1731 

97.7302 

1.0180 

1.3155 

0.0101 

-0.2261 

67.4570 

99.6378 

1.2053 

1.5036 

0.0290 

-0.0298 

-0.0013 

-0.0192 

-0.0192 

0.0018 

-0.0035 

0.0078 

0.4994 

0.4923 

0.4929 

0.5007 

0.4985 

0.5031 

1.0000 

1.0010 

1.0005 

1.0049 

1.0065 

1.0046 
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Table 2: Simulation under mixture shared inverse Gaussian frailty model 

Parameter Estimates Standard 

Error 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

Geweke 

Values 

P 

Values 

Gelman and 

Rubin values 

burn in period = 5300; autocorrelation lag = 215 

α1(62.64) 

λ1(92.40) 

α2(1.81) 

λ2(1.17) 

ξ(0.019) 

β(-0.12) 

62.6490 

92.4043 

1.8146 

1.1703 

0.0192 

-0.1177 

0.3320 

0.5315 

0.2995 

0.1886 

0.0050 

0.0547 

61.9894 

91.4744 

1.2649 

0.8289 

0.0105 

-0.2036 

63.3069 

93.3411 

2.4986 

1.5774 

0.0286 

0.0021 

0.0116 

0.0081 

0.0021 

0.0153 

-0.0031 

0.0133 

0.5046 

0.5032 

0.5008 

0.5061 

0.4987 

0.5053 

1.0008 

1.0000 

1.0003 

0.9999 

1.0007 

1.0017 

 

Table 3: p-values of K-S Statistics for goodness of _t test for Kidney Infection data set 

Model Recurrences 

First                     Second 

Mixture shared gamma frailty 

Mixture shared inverse Gaussian frailty 

0.5722                   0.8412 

0.3516                   0.7356 

 

Table 4: Posterior results under mixture shared gamma frailty model 

Parameter Estimates Standard 

Error 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

Geweke 

Values 

P 

Values 

Gelman and 

Rubin values 

burn in period = 6400; autocorrelation lag = 245 

α1 

λ1 

α2 

λ2 

ξ 

β1 

β2 

β3 

β4 

β5 

69.4135 

98.7955 

1.2127 

1.4250 

0.0186 

-0.1320 

-12.5289 

7.6491 

7.1690 

0.2059 

0.3110 

0.6180 

0.0564 

0.0535 

0.0052 

0.0160 

3.5262 

0.5179 

0.5143 

0.0498 

68.8223 

97.8261 

1.1162 

1.3360 

0.0106 

-0.1650 

-18.8690 

6.7530 

6.2625 

0.1215 

70.0489 

99.7407 

1.3035 

1.5231 

0.0288 

-0.1064 

-6.4163 

8.6226 

8.1155 

0.2957 

0.0020 

0.0080 

0.0007 

0.0079 

-0.0122 

-0.0036 

0.0054 

0.0017 

0.0105 

-0.0021 

0.5008 

0.5032 

0.5002 

0.5031 

0.4951 

0.4985 

0.4985 

0.5006 

0.5042 

0.4991 

0.9999 

1.0043 

1.0045 

1.0027 

0.9999 

1.0000 

1.0024 

1.0004 

0.9999 

0.9999 
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Table 5: Posterior results under mixture shared inverse Gaussian frailty model 

Parameter Estimates Standard 

Error 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

Geweke 

Values 

P 

Values 

Gelman and 

Rubin values 

burn in period = 8200; autocorrelation lag = 85 

α1 

λ1 

α2 

λ2 

ξ 

β1 

β2 

β3 

β4 

β5 

69.1259 

92.3842 

1.2373 

1.4736 

0.0190 

-0.1062 

-12.197 

6.1190 

6.0600 

1.1958 

0.3339 

0.5421 

0.1688 

0.2318 

0.0046 

0.0192 

3.6825 

0.4784 

0.4636 

0.4680 

68.4878 

91.4749 

0.9283 

1.0526 

0.0107 

-0.1567 

-19.147 

5.2417 

5.2192 

0.3175 

69.7877 

93.3407 

1.5676 

1.9346 

0.0282 

-0.0787 

-5.7491 

6.9979 

6.9731 

2.0715 

-0.0050 

0.0072 

-0.0012 

-0.0020 

-0.0026 

-0.0068 

-0.0061 

0.0087 

0.0130 

0.0015 

0.4979 

0.5029 

0.4994 

0.4991 

0.4989 

0.4972 

0.4972 

0.5034 

0.5052 

0.5006 

1.0003 

1.0000 

1.0000 

1.0000 

1.0001 

1.0002 

1.0000 

1.0000 

1.0001 

1.0003 

 

Table 6: Posterior results under without frailty model 

Parameter Estimates Standard 

Error 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

Geweke 

Values 

P 

Values 

Gelman and 

Rubin values 

burn in period = 7700; autocorrelation lag = 140 

α1 

λ1 

α2 

λ2 

β1 

β2 

β3 

β4 

β5 

50.0306 

58.5419 

1.1960 

1.1960 

-0.1347 

-10.053 

6.1265 

6.3321 

0.2094 

0.3333 

0.5529 

0.1590 

0.2262 

0.0294 

2.4872 

0.4836 

0.4571 

0.0512 

49.3699 

57.5641 

0.9022 

1.0491 

-0.2087 

-14.6149 

5.2182 

5.4939 

0.1181 

50.6603 

59.4531 

1.5193 

1.9633 

-0.0954 

-5.6510 

6.9830 

7.2916 

0.3011 

0.0027 

-0.0015 

-0.0010 

0.0028 

0.0001 

0.0122 

-0.0159 

0.0061 

-0.0004 

0.5010 

0.4993 

0.4995 

0.5011 

0.5000 

0.5000 

0.4936 

0.5024 

0.4998 

1.0000 

1.0001 

1.0006 

1.0013 

1.0001 

1.0000 

1.0000 

1.0000 

1.0000 

 

Table 7: AIC, BIC and DIC values for all models 

Model No. AIC BIC DIC Log-likelihood 

Model I 

Model II 

Model III 

691.7195 

691.5905 

697.6049 

708.0953 

707.9664 

712.3432 

674.7153 

678.4154 

684.9765 

-335.8597 

-335.7953 

-339.8025 

 

 

Table 8: Bayes factor values and decision for test of significance for frailty fitted to Kidney Infection Data Set 

Numerator model 

 

2loge(Buv) 

 

Range 

 

Evidence against 

against denominator model 

MI against MII 

MI against MIII 

MII against MIII 

4.877261 

10.09704 

5.219776 

≥2 and ≤ 10 

≥ 10 

≥2 and ≤ 10 

Positive 

Very strong Positive 

Positive 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 15, Number 11 (2020) pp. 1088-1097 

© Research India Publications.  https://dx.doi.org/10.37622/IJAER/15.11.2020.1088-1097  

1096 

 

Figure 1: Trace plots of model-I 

 

Figure 2: Coupling from the past plots of model-I 
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Figure 3: ACF plots of model-I 

 

 

Figure 4: Running mean plots of model-I 


