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Abstract

Frailty models are used in the survival analysis to account for the unobserved hetero-
geneity in individual risks to disease and death. To analyze the bivariate data on related
survival times (e.g. matched pairs experiments, twin or family data), the shared frailty
models were suggested. In this manuscript, we propose a new mixture shared inverse
Gaussian frailty model based on modified Weibull as baseline distribution. The Bayesian
approach of Markov Chain Monte Carlo technique is employed to estimate the parameters
involved in the models. In addition, a simulation study is performed to compare the true
values of the parameters with the estimated values. A comparison with the existing model
was done by using Bayesian comparison techniques. A better model for infectious disease
data related to kidney infection is suggested.

Keywords: mixture frailty model, Bayesian approach, inverse Gaussian frailty, modified Weibull
distribution, MCMC.

1. Introduction

While studying the effect of age at the onset of diseases and other related risk factors, it is
not possible to assume all the individuals to have the same risk of getting a particular disease.
Under this condition, the population is considered as a mixture of groups of individuals having
different frailties that caused heterogeneity in the study population. Neglecting such type of
frailty in real life experiment often lead to an incorrect conclusion especially in the study of
survival analysis. However, most researchers in the field of medical sciences are unaware of
the importance of the effects of heterogeneity in data analysis. Clayton (1978) first designed
a model to account for such unobserved covariates. The term frailty was first introduced by
Vaupel, Manton, and Stallard (1979) in the study of mortality.

Shepard and Zeckhauser (1977) showed that neglecting heterogeneity produces overestimates
of the effects on life expectancy of a given medical improvement. Keyfitz and Littman (1979)
also showed that ignoring heterogeneity will lead to an incorrect calculation of the life ex-
pectancy from known death rates. The same conclusion was drawn by Vaupel et al. (1979)
using an infinite mixture model in which unobserved nonnegative random frailty represents all
individuals in endowment for longevity. Aalen (1980) first suggested additive hazard model
by assuming linear effects of the covariates term to the baseline hazard function. Lin and Ying
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(1994) also proposed a new additive hazard model by assuming the failure times are indepen-
dent. Hanagal and Pandey (2016) studied the shared frailty models under the assumption
that frailty term acting additively to the baseline hazard function by taking gamma distri-
bution as frailty distribution. Hanagal and Pandey (2017) also discussed the additive hazard
model associated with the frailty term by considering frailty distributions as gamma and in-
verse Gaussian under generalized log-logistic, exponential power and generalized Weibull as
baseline distributions. In the frailty model, the frailty term V and baseline hazard function
r0(y) cannot be separated since in a cluster level, the frailty is incorporated with the baseline
hazard in a multiplicative manner. Therefore, the hazard function at the individual level of
a new mixture frailty model for the failure time Y and observable covariate X is expressed as

r(y/X) = r0(y)(v + eX
′β)

where β is the regression coefficient associated with a known covariate. Then, the cumulative
hazard function is written as

R(y/X) = R0(y)(v + eX
′β)

Where R0(y) is the cumulative hazard function for the time y > 0. The conditional survival
function given frailty V = v is given as

S(y/v) = e−[R0(y)(v+eX
′β)]

When v = 0, frailty distribution is degenerated for all individuals. Under this condition,a
mixture frailty model reduces to proportional hazard model.

The marginal survival function can be obtained by integrating over the range of frailty variable
V = v having the probability density function as f(v) and is given by

S(y) = e−R0(y)eX
′β
Lv[R0(y)]

where Lv(.) is the Laplace transform of the frailty variable v.

Due to the simplicity of mathematical expression, Gamma distribution is the most commonly
used frailty distribution. The shared gamma frailty models were first recommended by Clayton
(1978) for the investigation of the relationship between clustered survival times in the study of
disease transmission due to hereditary. An advantage is that without covariates its scientific
properties are helpful for estimation (Oakes 1982). However, this frailty model also presents
certain limitations (Kheiri, Kimber, and Meshkani 2007). The inverse Gaussian distribution
is popularly used as frailty distribution for parametric model when the Gamma frailty model
presents such limitations. Similarities are also observed between frailty distribution and age
of survivors as time increases in inverse Gaussian distribution. Further, inverse Gaussian
distribution is more flexible than gamma for modeling of the survival data. When there
are more failures at the beginning of lifetime distribution and non-monotonic failure rate is
expected, the inverse Gaussian model is more appropriate for the lifetime model. Gamma
and inverse Gaussian distribution are more attractive as unconditional survival function and
hazard functions can be expressed as simple closed form.

In this article, we consider right censored data with inverse Gaussian as the frailty distribution
and modified Weibull distribution as the baseline distribution to explore the salient features of
the shared inverse Gaussian frailty model. Here the dependency between survival times is due
to the inverse Gaussian distributed frailty variable. The degrees of heterogeneity of the study
population depends on variance value of the frailty distribution. Larger variance of frailty
distribution implies more heterogeneity. When frailty distribution has zero variance, it is said
to have degenerate distribution. The modified Weibull distribution was chosen as baseline
distribution since the hazard function has flexible property, which is one of the important
properties in the real-life data analysis.
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Generally, the classical approach and the Bayesian approach are two commonly used tech-
niques. Here, we adopted Markov Chain Monte Carlo (MCMC) method under Bayesian
technique to estimate the model parameters as prior distribution can be used, different prop-
erties of posterior distribution can be easily derived, interpretation of the results become
easier and model choice criteria can be formulated. We also presented a simulation study to
check the performance of the models. All the estimation procedure and models comparison
were illustrated with infectious disease data related to kidney infection.

In sections 2 and 3, we give the introduction of a mixture shared inverse Gaussian frailty
model and shared inverse Gaussian frailty model, followed by baseline distribution and pro-
posed models in section 4 and section 5. In section 6, we discuss estimation strategies. We
present simulation study and application to real-life data in sections 7 and 8 and section 9
for discussion of the results.

2. A mixture shared inverse Gaussian frailty model

Suppose n individuals are observed for the study and let a bivariate random variable (y1q, y2q)
present the first and second survival times of the pth (p = 1, 2) component of qth (q =
1, 2, ..., n) individual. Then, the conditional hazard function and conditional survival function
for (y1q, y2q) given unobserved covariates vq are respectively,

r(ypq/vq, X) = r0(ypq)(vq + ηq)

S(ypq/vq, X) = e−[R0(ypq)(vq+ηq)]

where ηq = eXqβ. Under the assumption of independence, the bivariate survival function for
the given frailty Vq = vq at times y1q > 0 and y2q > 0 is

S(y1q, y2q/vq, Xq) = e−[(R01(y1q)+R02(y2q))(vq+ηq)]

By integrating the conditional survival function with respect to the frailty variable Vq having
the probability density function f(v), we obtained the unconditional survival function as

S(y1q, y2q | Xq) =

∫
Vq
e−[(R01(y1q)+R02(y2q))(vq+ηq)]fv(vq)dvq

= e−(R01(y1q)+R02(y2q))ηqLVq [R01(y1q) +R02(y2q)]

whereLVq(.) is the Laplace transform of the frailty variable of Vq for qth individual. Here
onwards S(y1q, y2q/Xq) expressed as S(y1q, y2q).

Here, we consider inverse Gaussian distribution as frailty distribution with parameters ζ and
ξ having probability density function as

f(v) =


[

1
2πζ

] 1
2 v−

3
2 e

(v−ξ)2

2vζξ2 ; v > 0, ζ > 0, ξ > 0

0 ; otherwise,

For the identifiability of the distribution, the expected value of the distribution is assumed to
be one and have finite variance. By using Laplace transformation, the unconditional bivariate
survival function of mixture shared inverse Gaussian frailty model for the qth individual
becomes

S (y1q, y2q) = e−(R01(y1q)+R02(y2q))ηqexp

[
1− (1 + 2ξ(R01(y1q) +R02(y2q))

1/2

ξ

]
(1)

where R01(t1q) and R02(t2q) are the cumulative baseline hazard functions of the life time
random variables Y1q and Y2q respectively.
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3. Shared inverse Gaussian frailty model

The unconditional survival function for shared gamma frailty model, where the bivariate
frailty distribution (V1, V2) depicted by V = V1 = V2 is given as

S(y1q, y2q) = exp

[
1− (1 + 2ξηq(R01(y1q) +R02(y2q))

1/2

ξ

]
(2)

where ξ stand for the variance of V.

And the model without frailty becomes

S(y1q, y2q) = e−[(R01(y1q)+R02(y2q))ηq ] (3)

4. Baseline distribution

Generally, in the parametric model, it is assumed that baseline hazard r0(y) is a parametric
function. Here, modified Weibull distribution is considered as the baseline distribution pro-
posed by Sarhan and Zain-Din (2008), which is the generalization of Weibull distribution and
applied in data related to fatigue life and having the hazard function for time Y as

r(y) = α+ λγyγ ; y > 0, α > 0, λ > 0, γ > 0

The corresponding cumulative hazard function and survival functions are respectively,

R(y) = αy + λyγ ; y > 0, α > 0, λ > 0, γ > 0

S(y) = e−αy−λy
γ

; y > 0, α > 0, λ > 0, γ > 0 (4)

where α, λ and γ are the parameters of the modified Weibull distribution. The distribu-
tion generalized different distributions such as exponential, Rayleigh, linear failure rate and
Weibull distributions depends on the value of the parameters. The hazard function is either
constant as γ = 1 or increasing as γ > 1 or decreasing as γ < 1.

5. Proposed models

The unconditional survival functions are obtained by replacing the cumulative hazard function
of modified Weibull distribution in equations (1), (2) and (3) respectively. Then,

S (y1q, y2q) = e−(α1y1q+λ2y
γ2
2q+α2y2q+λ2y

γ2
2q )ηq

exp

[
1− (1 + 2ξ(α1y1q + λ2y

γ2
2q + α2y2q + λ2y

γ2
2q )

1/2

ξ

]
(5)

S(y1q, y2q) = exp

[
1− (1 + 2ξηq(α1y1q + λ2y

γ2
2q + α2y2q + λ2y

γ2
2q )

1/2

ξ

]
(6)

S(y1q, y2q) = exp
[
−ξ
(
α1y1q + λ2y

γ2
2q + α2y2q + λ2y

γ2
2q

)
ηq
]

(7)

The equations (5) and (6) are mixture shared inverse Gaussian frailty model and shared
inverse Gaussian frailty model under modified Weibull baseline distribution, called as model-I
and model-II. Equation (7) is without frailty model under the same baseline distribution and
called as model-III.

6. Estimation strategies

The likelihood function can be obtained by blending the failure times of the qth individuals
(q = 1,2,3,. . . , n) and censoring times by assuming independence between censoring scheme
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and individuals lifetimes and is given by

L(Ψ, β, ξ) =
n1∏
q=1

f1(y1q, y2q)
n2∏
q=1

f2(y1q, d2q)
n3∏
q=1

f3(d1q, y2q)
n4∏
q=1

f4(d1q, d2q) (8)

where Ψ, β and ξ are vectors of baseline parameters, regression coefficients and frailty distri-
bution parameter respectively. The likelihood function for without frailty is given as

L(Ψ, β) =
n1∏
q=1

f1(y1q, y2q)
n2∏
q=1

f2(y1q, d2q)
n3∏
q=1

f3(d1q, y2q)
n4∏
q=1

f4(d1q, d2q) (9)

where n1, n2, n3 and n4 are the random number of observations observed to lie in the ranges
y1q < d1q, y2q < d2q; y1q < d1q, y2q > d2q; y1q > d1q, y2q < d2q and y1q > d1q, y2q > d2q
respectively and the contribution of the qth individual in the likelihood function as

f1(y1q, y2q) =
∂2S(y1q, y2q)

∂y1q∂y2q

f2(y1q, d2q) = −∂S(y1q, d2q)

∂y1q

f3(d1q, y2q) = −∂S(d1q, y2q)

∂y2q

f4(d1q, d2q) = S(d1q, d2q) (10)

Putting equation (10) in equations (8) and (9), we get the likelihood functions for mixture
shared frailty model, shared frailty model and for without frailty model respectively.

The joint posterior density of the parameters given failure times is given as

π(α1, λ1, α2, λ2, ξ, β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, ξ, β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(ξ)
5∏
i=1

pi(βi)

where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyperparameters
of corresponding arguments for baseline parameters and frailty variance; pi(.) is prior density
function for regression coefficient βi; βi represents a vector of regression coefficients except βi,
i = 1, 2, . . . , a and likelihood function L(.) is given by equation (8) or (9). Here it is assumed
that all the parameters are independently distributed.

The expression of the likelihood functions in equations (8) and (9) are not easy to solve by
using the Newton Raphson method. MLEs failed to converge as it involves a large number
of parameters. Thus, in our problem a Bayesian approach, which does not suffer from these
difficulties, is a natural one, even though it is relatively computationally intensive.

Prior distributions are used as follows - gamma distribution with mean 1 and large vari-
ance Γ(Ψ,Ψ) is used as a prior distribution for frailty parameter with a small value of
Ψ. Normal distribution with mean zero and large variance is used as prior for the re-
gression coefficient, say ϕ2. The same type of prior distributions considered in Ibrahim,
Chen, and Sinha (2001) and Sahu, Dey, Aslanidou, and Sinha (1997) and non-informative
prior assumed as the baseline parameters since we do not have any information about the
baseline parameters. Γ(a1, b1) and U(a2, b2) are used as non-informative prior distribu-
tions. All the hyper-parameters Ψ, ϕ, a1, a2, b1 and b2 are assumed to be known. Here
Γ(a1, b1) represents gamma distribution with shape parameter a1 and scale parameter b1
and U(a2, b2) is the uniform distribution over the interval a2 to b2. We set hyper-parameters
as Ψ = 0.0001, ϕ2 = 1000, a1 = 1, b1 = 0.0001, a2 = 0, and b2 = 100.

To estimate the parameters in the models fitted with the above prior density function and
likelihood equations (8) and (9), Metropolis Hasting Algorithm and Gibbs Sampler was uti-
lized. The convergence of the Markov chain to a stationary distribution is also observed by
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Geweke test and Gelman-Rubin Statistics as suggested by Geweke (1992) and Gelman and
Rubin (1992). To check the behavior of the chain, to decide burn-in period and autocorrela-
tion lag, we used trace plots, coupling from the past plots and sample autocorrelation plots
respectively.

It is important to decide which model provides the best fit to the dataset, the model com-
parison was done by using Akaike Information Criteria (AIC), Bayesian Information Criteria
(BIC) and Deviance Information Criteria (DIC) and Bayes factor.

Suppose there are q parameters in a model and n observations in a dataset. AIC, BIC and
DIC are elucidated as

AIC = −2`ogL(y|θ̂) + 2q
BIC = −2`ogL(y|θ̂) + `og(n)q
DIC = −2`ogL(y|θ̂) + 2qD

where qD = E [2`ogL(y|θ)]-2`ogL(y|θ̂).
Smaller values of AIC, BIC and DIC for the models are considered as better models than
higher values.

Bayes factor also employed for selection of Model Mr against Model Mv and defined as

BFrv =
P (y|Mr)

P (y|Mv)

where

P (y|Mk) =

∫
Q
P (y|Ω,Mk)π(Ω|Mk)dΩ

where Ω represents the number of unknown parameters, π(Ω|Mk) is the density of prior
distribution and Q is the bolster of the parameters Ω.

In spite of the fact that 2`ogBFrv is roughly equal to the differences in the values of BIC
for the given models, we utilized the strategy given by Kass and Raftery (1995), to compute
P (y|M) from the MCMC sample gotten from each of the model parameters.

P (y|M) =

(∑N
k=1 L(y|Ωk)−1

N

)−1

where Ωk and N symbolize sample and sample size of the posterior distribution.

A value of 2`ogBFrv more than 10 indicates an extremely strong positive evidence to favor
model Mr over model Mv while a value between 0 and 2 is insufficient evidence to favor either
model. A value between 2 and 6 or 6 and 10 indicates a mild or moderately strong evidence
respectively, to favor the numerator model.

7. Simulation study

To evaluate the performance of the Bayesian estimation procedure we carried out a simulation
study. For the simulation purpose we have considered only one covariate X1 which assume
to follow normal distribution. As the Bayesian strategies are time consuming, fifty sets of
lifetimes were generated utilizing the inverse transform procedure. Both the chains were
iterated for 100000 times. There is no effect of prior distribution on posterior summaries
because estimates of parameters are nearly same and convergence rate of Gibbs sampler for
both the prior sets is also not greatly different. Also for both the chains the results were
somewhat similar, so we present here the analysis for only one chain with Γ(a1, b1) as prior to
baseline distribution for all the models. The Gelman-Rubin convergence statistic values are
nearly equal to 1, the Geweke test values are quite small, and the corresponding p-values are
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Table 1: Simulation under mixture shared inverse Gaussian frailty model

Actual Estimates Standard Lower Upper Geweke p Gelman
Parameter Error Credible Credible values values & Rubin
values Limit Limit values
burn in period = 6300; autocorrelation lag = 185
α1(0.0049) 0.0049 0.0003 0.0044 0.0056 -0.0013 0.4994 1.0005
α2(0.0051) 0.0051 0.0004 0.0041 0.0059 0.0007 0.5003 1.0021
λ1(0.0028) 0.0029 0.0005 0.0020 0.0039 -0.0101 0.4959 1.0000
λ2(0.0011) 0.0011 3.4e-05 0.0010 0.0012 0.0012 0.5004 1.0004
γ1(0.9150) 0.9123 0.0495 0.8426 1.0238 -0.0019 0.4992 0.9999
γ2(0.2400) 0.2399 0.0557 0.1443 0.3354 -0.0004 0.4998 1.0005
ξ (0.4350) 0.4341 0.0541 0.3457 0.5315 -0.0015 0.4993 1.0018
β (0.0298) 0.0297 0.0054 0.0204 0.0393 -0.0025 0.4989 1.0000

Table 2: Simulation under shared inverse Gaussian frailty model

Actual Estimates Standard Lower Upper Geweke p Gelman
Parameter Error Credible Credible values values & Rubin
values Limit Limit values
burn in period = 6600; autocorrelation lag = 210
α1(0.0490) 0.0494 0.0031 0.0432 0.0554 0.0044 0.5017 1.0004
α2(0.0421) 0.0424 0.0050 0.0319 0.0496 -0.0058 0.4976 1.0037
λ1(0.0070) 0.0069 0.0005 0.0060 0.0079 0.0035 0.5014 1.0057
λ2(0.0011) 0.0011 3.35e-05 0.0010 0.0012 -0.0007 0.4997 1.0000
γ1(0.9510) 0.9438 0.0566 0.8539 1.0450 -0.0003 0.4998 1.0008
γ2(0.4410) 0.4401 0.0563 0.3462 0.5331 -0.0125 0.4950 1.0007
ξ (0.8220) 0.8220 0.0540 0.7247 0.9137 0.0019 0.5007 0.9999
β (0.0090) 0.0089 0.0005 0.0080 0.0099 -0.0061 0.4975 1.0000

large enough to say that the chain attains stationary distribution. Tables 1 and 2 present the
posterior summaries of mixture shared inverse Gaussian frailty and shared inverse Gaussian
frailty with modified Weibull baseline distribution. It provides estimates (posterior means),
standard error and upper and lower credible limits with 95% confidence intervals.

8. Application in real life data

To illustrate the Bayesian estimation procedure we use kidney infection data of (McGilchrist
and Aisbett 1991). It consists of recurrent infection times from the use of catheters for 38
patients using portable dialysis machine. The two infection times per patient are grouped
together in a cluster. Other relevant informations are censoring time of infection, the age of
patients, gender (0 for male and 1 for female), disease types such as Glomerulo Nephritis(GN),
Acute Nephritis (AN) and Polycystic Kidney Disease (PKD).

First, Kolmogorov Smirnov test is used to check the goodness of fit for kidney infection data
and it is found that the p-values obtained for the first and second recurrences are large enough
and hence there is no reason to reject the hypothesis that the first and second recurrence time
to follow the distributions with survival function as given in equation (4) in univariate case
and thus it is assumed to be fitted for bivariate case. The corresponding p-values are given in
Table 3. We run two parallel chains for all models using two sets of prior distributions with
the different starting points using the Metropolis-Hastings algorithm and the Gibbs sampler
based on normal transition kernels. We iterate both the chains for 100000 times. As seen
in the simulation study here also we got nearly the same estimates of parameters for both
the set of priors, so estimates are not dependent on the different prior distributions. The



38 A Mixture Frailty Model

Table 3: p-values of K-S Statistics for the goodness of fit test for Kidney Infection data set
under Modified Weibull baseline distribution

Recurrence times
Distribution first second
Mixture shared inverse Gaussian frailty 0.8687 0.8430
Shared inverse Gaussian frailty 0.3573 0.4571

convergence rate of the Gibbs sampler for both the prior sets is almost the same. Also, both
the chains show somewhat similar results, so we present here the analysis for only one chain
with Γ(a1, b1) as prior for the baseline parameters, for all the models. We also calculate
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Figure 1: (a) ACF plot (b) Running mean plot of model-I.

Gelman Rubin statistic values and Geweke test statistics values to check the convergence of
the Markov chain to a stationary distribution. Gelman Rubin statistics values are closed to
one, Geweke test statistics values are closed to zero and the p-values are large enough to say
that the chains attain stationary distribution. The largest values of GR statistics are 1.0072,
1.0038 and 1.0083, which indicating that 5900, 6100 and 5900 iterations would be satisfactory
burn-in-period. Autocorrelation plot is used to decide autocorrelation lag given in figure 1(a)
and the convergence of the chain also confirm by running mean plot given in figure1(b). The
estimate of parameters (posterior mean), standard error, credible limits are given in Tables
4, 5 and 6. Since the credible intervals do not contain zero, all the factors are significant.
The positive value of β1 indicates that age is a significant factor for infection of the kidney,
as age increases the chance of infection also increase. The negative value of β2 shows that
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Table 4: Posterior results under mixture shared inverse Gaussian frailty model

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 5900; autocorrelation lag = 240
α1 0.0050 0.0003 0.0043 0.0056 0.0065 0.5026 1.0000
α2 0.0051 0.0005 0.0041 0.0059 -0.0167 0.4933 1.0068
λ1 0.0029 0.0006 0.0020 0.0039 -0.0094 0.4962 0.9999
λ2 0.0011 3.3e-05 0.0010 0.0012 0.0023 0.5009 1.0001
γ1 0.9768 0.0563 0.8855 1.0730 0.0112 0.5044 1.0000
γ2 0.2418 0.0556 0.1467 0.3366 -0.0028 0.4988 1.0013
ξ 0.4257 0.0521 0.3443 0.5331 0.0099 0.5039 1.0010
β1 0.0300 0.0049 0.0210 0.0390 -0.0021 0.4991 1.0072
β2 -4.1150 1.3291 -6.9925 -2.2882 0.0019 0.4991 1.0062
β3 0.0029 0.0005 0.0020 0.0039 0.0083 0.5033 1.0002
β4 0.5060 0.0547 0.4137 0.6023 0.0027 0.5010 0.9999
β5 -6.8937 2.5580 -11.4292 -1.9047 0.0042 0.5016 1.0000

Table 5: Posterior results under shared inverse Gaussian frailty model

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 6100 ; autocorrelation lag = 190
α1 0.0480 0.0030 0.0414 0.0540 0.0083 0.5033 0.9999
α2 0.0359 0.0051 0.0282 0.0471 0.0057 0.5023 1.0038
λ1 0.0069 0.0005 0.0060 0.0079 -0.0011 0.4995 1.0001
λ2 0.0009 0.0005 6.02e-05 0.0019 -0.0078 0.4968 1.0002
γ1 0.6915 0.0560 0.5955 0.7822 -0.0025 0.4989 1.0021
γ2 0.4265 0.0555 0.3341 0.5236 -0.0063 0.4974 1.0039
ξ 0.3910 0.0508 0.3065 0.4865 0.0058 0.5023 1.0002
β1 0.0079 0.0005 0.0070 0.0089 0.0054 0.5021 1.0004
β2 -2.0598 0.2317 -2.5027 -1.6181 -0.0006 0.5021 1.0000
β3 0.0040 0.0005 0.0031 0.0049 -0.0131 0.4947 0.9999
β4 0.0020 0.0005 0.0011 0.0029 -0.0036 0.4985 1.0000
β5 -1.5227 0.4460 -2.3664 -0.6725 -0.0004 0.4998 0.9999

female has a lower chance of infection than male. Other significant factors, which have a
higher chance of infection is disease types such as Glomerulo Nephritis(β3), Acute Nephritis
(β4) and Polycystic Kidney Disease (β5).

A better model as per AIC, BIC and DIC values is model-I, since it has lower values of
AIC, BIC and DIC than model-II under modified Weibull baseline distribution which is given
in Table 7. But the distinction between AIC, BIC, and DIC values for model-I, model-II
and model-III are exceptionally little, so AIC, BIC, and DIC values are not recommendable
to take a choice between the models. Presently we consider Bayes factor for comparing a
pair of models r and v. The values in Table 8 shows that model-I is better than model-II
and model-III as the corresponding value of 2log(Brv) is greater than 2 and 6 indicating that
there is positive and strong positive to favor model-I than model-II and model-III for the given
dataset, which affirms our earlier result given in Table 7. Hence from all the demonstrated
comparison criteria, we can say model-I that is mixture shared inverse Gaussian frailty model
is better than model-II and model-III (shared inverse Gaussian frailty model and without
frailty model) under modified Weibull distribution as a baseline for modeling kidney infection
data. 2log(Brv) value of model-II against model-III is 3.6679, which means that frailty models
are better than without the frailty model under modified Weibull as baseline distribution.
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Table 6: Posterior results under without frailty model

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 5900; autocorrelation lag = 240
α1 0.0050 0.0003 0.0043 0.0056 0.0044 0.5017 1.0007
α2 0.0053 0.0004 0.0041 0.0059 0.0047 0.5018 1.0083
λ1 0.0069 0.0005 0.0060 0.0079 -0.0052 0.4978 1.0208
λ2 0.0031 0.0005 0.0022 0.0040 0.0012 0.5005 1.0061
γ1 0.9938 0.0472 0.9232 1.0912 0.0020 0.5008 1.0074
γ2 0.5042 0.0521 0.4123 0.5910 0.0046 0.5018 1.0005
β1 0.0201 0.0046 0.0109 0.0285 0.0033 0.5013 1.0001
β2 -1.4733 0.2793 -2.0170 -0.9352 -0.0041 0.5013 1.0007
β3 0.0032 0.0005 0.0022 0.0041 -0.0031 0.4987 1.0003
β4 0.6469 0.0510 0.5580 0.7423 -0.0096 0.4961 1.0010
β5 -1.1094 0.4041 -1.8762 -0.2903 -0.0050 0.4979 1.0000

Table 7: AIC, BIC and DIC values for all models

Model No. AIC BIC DIC log-likelihood

Model I 684.7071 704.3582 663.4949 -330.3536
Model II 688.2823 707.9334 668.3010 -332.1412
Model III 688.0174 706.0308 672.2273 -333.0087

Table 8: Bayes factor values and decision for test of significance for frailty fitted to Kidney
Infection Data Set

Numerator model 2loge(Brv) Range Evidence against
against denominator model model in denominator
MI against MII 5.0672 ≥ 2 and < 6 Positive
MI against MIII 8.7352 ≥ 6 and < 10 Strong Positive
MII against MIII 3.6679 ≥ 2 and < 6 Positive

9. Discussion

In this paper, we discuss the results for a new mixture shared inverse Gaussian frailty model
and existing shared inverse Gaussian frailty model under the same modified Weibull baseline
distribution.

The Metropolis-Hastings and Gibbs sampler were utilized to fit all the proposed models.
Kidney infection data were analyzed using the proposed models and the better model is
suggested. We have utilized self-composed programs in R statistical software to perform the
analysis.

All the demonstrated comparison criteria exhibit that a mixture shared inverse Gaussian
frailty model demonstrated with modified Weibull baseline is better for modeling of kidney
infection data rather than the existing shared inverse Gaussian a frailty model under the
same baseline distribution. The estimates of frailty parameters were high in all models which
are 0.4257 and 0.3910 for mixture shared inverse Gaussian frailty model and shared inverse
Gaussian frailty model respectively. This demonstrated that there is strong evidence of a high
degree of heterogeneity among the patients in the population. Only few patients are antic-
ipated to be exceptionally inclined to infection compared to others with the same covariate
values. We further established that there is a strong positive relationship between the two
infection times for the same patient. So, we have a new model called a mixture shared inverse
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Gaussian frailty model to analyze kidney infection data.
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