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ABSTRACT 
 

 The study proposes additive hazard shared inverse Gaussian frailty model with 

generalized Pareto, generalized Rayleigh and xgamma distributions as baseline 

distribution to analyze the bivariate data set of McGilchrist and Aisbett (1991). The 

estimation of the parameters involved in the models was done by Bayesian approach of 

Markov Chain Monte Carlo technique. The true values and the estimated values of the 

parameters are compared by using simulation study. The proposed models are fitted to 

the real life data set and the best model suggested for the data. 
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1. INTRODUCTION 
 

 The bivariate survival data are said to be correlated if the individual experiences two 

events or recurrence events and so on. This correlation may be due to some other hidden 

covariates, which are unobserved and plays important roles in analysis of survival data. The 

unobservable random variable is termed as “frailty", which is shared by individuals in a 

group. Some examples of bivariate survival data are - the survival time of a pair of testis in 

the study of testicular cancer, which may be due to undescended testis or previous history 

of testicular cancer in medical research; the failure time of two engines of aero plane in 

engineering research, damage time of a pair of shoe soles, recurrences of a particular cancer 

and so on. To analyze such kind of data, it is necessary to introduce other random 

components, which accounts for within-subject dependency. Clayton (1978) first suggested 

random effect model for such type of problem arising in real-life situation, which was later 

given the term “frailty" by Vaupel et al. (1979) in the study of mortality. 
 

 The most used frailty distribution is gamma distribution due to mathematical 

convenience, but it has some demerits (Kheri et al., 2007). The alternative frailty 

distribution is inverse Gaussian distribution. The gamma and inverse Gaussian 

distributions have distinct properties. Hougaard (1984) mentioned that the homogeneity 

of the population with time is due to inverse Gaussian; inverse Gaussian distribution is 

also more flexible than gamma for modeling of the survival data. When there are more 
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failures at the beginning of life time distribution and non-monotonic failures rate is 

expected, the inverse Gaussian model is more appropriate for the life time model. 

Gamma and inverse Gaussian distribution are more attractive because the unconditional 

survival function and hazard function can be expressed as simple closed form.  
 

 The frailty approach of modeling has gained more attention in some recent reference 

due to the unique features of the frailty parameters (Lancaster and Nickell, 1980). Keyfitz 

and Littman (1979) showed that neglecting individual heterogeneity results in the wrong 

conclusions. Generally, a multiplicative effect of frailty on the baseline hazard function is 

assessed in the shared frailty models (Hanagal and Pandey, 2014). But sometimes the 

random effect acts additively on the baseline hazard function accounting for more 

realistic nature. Aalen (1980, 1989) first suggested additive hazard model by adding 

covariate term in the baseline hazard function for the lifetime of an individual t  and is 

given as 
 

  0( / ) ( )r t X r t X     
 

 Different way of expressing additive hazard model is given by 
 

  0( / ) ( ) Xr t X r t e
   

 

where  0m t  is a baseline hazard function at time 0t  , X  is the row vector of 

covariates, and   is column vector of regression coefficients. Assuming that the frailties 

are acting additively on the baseline hazard for a given frailty variable W w  at time 

0t   is 
 

  0( / ) ( ) wX W
r t X r t e

  
   

 

which can be expressed as 
 

  0( / ) ( ) , 0,Xr t X r t ve v w
        

 

where wW
v e


 . Then the cumulative hazard function is 

 

  0( / ) ( ) XR t X R t vte
   

 

where  0R t  is the cumulative baseline hazard function at time 0t  . The conditional 

survival function for a given frailty at time 0t   is 
 

  
0[ ( ) ]

( / )
XR t vte

S t v e
 

  
 

 The marginal survival function is obtained by integrating out V  having the 

probability density  f v  and is given by 
 

  0( ) ( ) [ ]X
zS t S t L te

  
 

where  .vL  is the Laplace transformation of the distribution of V  and  0S t  is the 

baseline survival function. Once we get the survival function at time 0t  , of life time 
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random variable for an individual, we can obtain probability structure and make 

inferences based on it. 
 

 Hanagal and Pandey (2016, 2017) also studied the additive frailty by using frailty 

distribution as gamma and inverse Gaussian distributions and exponential power 

distribution, generalized log-logistic distribution and generalized Weibull distribution as 

baseline distributions. 
 

 In this manuscript, we consider right censored data with inverse Gaussian distribution 

as frailty distribution and generalized Pareto, generalized Rayleigh and xgamma 

distributions as the baseline distribution to explore the salient features of the additive 

hazard shared inverse Gaussian frailty models. Here the dependence between survival 

times is due to inverse Gaussian distributed common frailty variable. When the frailty 

distribution has zero variance, it is said to have degenerate distribution and when the 

distribution of frailty variable is not degenerate, positive dependence occurs. The 

heterogeneity of the population is determined by the value of the estimated frailty 

parameter. The three distributions are chosen as baseline distributions for comparison 

since there are few differences in the property of the hazard functions for each proposed 

baseline distribution. 
 

 The two common approaches for estimation of parameters are maximum likelihood 

estimation method and Bayesian method of estimation. Bayesian method has advantages 

from computational and analytical point of view. Thus, we employed Bayesian approach 

of Markov Chain Monte Carlo Technique to estimate the parameters involved in the 

models. MCMC method can derive different features of the posterior distribution by 

combining information obtained from prior distribution and likelihood function. Model 

choice criteria can also be formulated according to posterior predictive loss (Gelfand and 

Ghosh, 1998). Further, a simulation study is presented to check the performance of the 

models. All the estimation procedures and models are illustrated with bivariate survival 

data of Aisbett and McGilchrist (1991) related to kidney infection data. Comparison of 

the proposed models is done by using Bayesian comparison technique such as AIC, BIC, 

DIC and Bayes factor. 
 

 The remaining sections are categorized as- in section 2, the introduction of general 

shared frailty model is provided and in section 3, an inverse Gaussian shared frailty 

model based on additive hazard is discussed. Section 4 introduces the baseline 

distributions. Different proposed shared frailty models are given in section 5. An outline 

of model fitting, using Bayesian approach is presented in section 6. Sections 7 and 8 are 

devoted to simulation study and analysis of kidney infection data respectively. Finally, 

section 9 consists of the discussion of the results. 

 

2. GENERAL SHARED FRAILTY MODEL 
 

 In the study it is assumed that there are n individuals, let  1 2,q qt t  be the first and 

second failure times for a person,  1,2, ,kqX k a   be the found covariate for the thq  

person. Here it is assumed that the two failure times share the same sort of covariates. Let 

qV  be the shared frailty for the 
thq  person, assuming that the frailties are acting 
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additively on the baseline hazard function. The two survival times of a person are 

conditionally independent for given shared frailty. Under these conditions, the 

conditional hazard function and conditional survival function for the thq  person at thp  

 1,2p   survival times pqt  for given frailty is 

 

  0( / , ) ( )pq q pq q qr t v X r t v  
      

         (1) 

 

  
0[ ( ) ]

( / , ) pq q pq qR t v t

pq qS t v X e
  


      

         (2) 

 

where  0 pqr t  and  0 pqR t  are respectively hazard function and cumulative hazard 

function at time 0pqt  , q = qX
e


 and   is the regression coefficient of order a. 

 

 Under the assumption of independence, the bivariate survival function for the given 

frailty q qV v  at time 1 0qt   and 2 0qt   is 

 

  
01 1 02 2 1 2[( ( ) ( ) ( ) ]

1 2( , ) q q q q q qR t R t v t t

q qS t t e
    

             (3) 

 

 The unconditional survival function is obtained by integrating the conditional survival 

function with respect to frailty variable qV  having the probability density function 

 qf v , for the thq  individual 
 

  

01 1 02 2 1 2[( ( ) ( ) ( ) ]

1 2( , ) ( )q q q q q q

q

R t M t v t t

q q v q q
V

S t t e f v dv
    

   

     = 01 1 02 2[( ( ) ( )]

1 2[( ) ]q q

q

R t R t

V q q qe L t t
 

            (4) 
 

where  .VqL  is the Laplace transformation of the frailty variable of qV  for thq  

individual. Here onwards  1 2,  /q q qS t t X  is expressed as  1 2,  q qS t t . 

 

3. SHARED INVERSE GAUSSIAN FRAILTY 
 

 A continuous random variable V  is said to follow an inverse Gaussian distribution 

with parameters   and  , if its probability density function is 
 

  

2

2

1 ( )3
2

22
1

; 0, 0, 0( ) 2

0 ;

v

vv e vf v

Otherwise






        



          

(5) 

 

 For the identifiability of the distribution, the mean of the distribution is assumed to be 

one and having finite variance. By using Laplace transformation, the unconditional 

bivariate survival function for the thq  individual becomes 
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01 1 02 2

1/2
( ( ) ( )) 1 2

1 2

1 (1 2 ( ))
( , ) expq qR t R t q q q

q q

t t
S t t e

 
    
 

    

    (6) 

 

where  01 1qR t  and  02 2qR t  are the cumulative baseline hazard functions of the 

lifetime 1qT  and 2qT . 

 

 The bivariate survival distribution function in the absence of frailty (without frailty) is 

given by 
 

  
01 1 02 2 1 2( ( ) ( ) ( ) )

1 2( , ) q q q q qR t R t t t

q qS t t e
    

 .           (7) 

 

4. BASELINE HAZARD ASSUMPTIONS 
 

 Here, generalized Pareto distribution is considered as the first baseline distribution; 

Haktanir (1992) utilized Pareto distribution to analyze the yearly optimum series for the 

unregulated stream in Anatolia. Davison and Smith (1990) mentioned that the generalized 

Pareto might frame the premise of a wide modeling approach to high-level exceedances. 

Davison (1994) modeled defilement due to the long-range are transport of radionuclides. 

Van Monfort and Otten (1991) connected the generalized Pareto distribution to show the 

crests over an edge stream flow and downpour sequence. Smith (1984) connected it to 

analyze inundation frequencies and wave statures. Davison and Smith (1990) displayed a 

comprehensive examination of the extremes of information by utilizing the generalized 

Pareto distribution for modeling the sizes and events of exceedances over a tall limit. 
 

 If a continuous random variable T  follows the three-parameter generalized Pareto 

distribution, then the cumulative distribution function, hazard function, and cumulative 

hazard function are, respectively, 
 

  

( ) 1 ; 0, 0, 0,t t
S t e t


  

       
 

 

        (8) 

 

  

( )
( ) , 0

( )

f t
r t t

S t t


    


 

 

  

( ) ln ( ) ln 1 , 0
t

R t S t t t
 

       
 

            (9) 

 

where  ,   and   are the parameters of the generalized Pareto distribution. The failure 

rate of the generalized Pareto distribution is increasing when  > 0, decreasing if   < 0 

and constant for   = 0. 
 

 A generalized Rayleigh distribution is considered as the second baseline distribution. 

Surles and Padgett (2001) presented a new two-parameter Burr type X  distribution and 

called it as generalized Rayleigh distribution. It is moreover an uncommon case of the 

generalized Weibull distribution, initially proposed by Mudholkar and Srivastava (1993). 

Kundu and Raqab (2006) mentioned that the probability density function of the 
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generalized Pareto distribution is increasing if the shape parameter   0.5 and decreasing 

if the shape parameter > 0.5. The two-parameter generalized Rayleigh distribution can be 

utilized viably in modeling data and moreover in modeling general lifetime data. 
 

 A continuous random variable T  is said to have generalized Rayleigh distribution if 

its survival function is 
 

  

 
2

( ) 1 1 ; 0, 0, 0
t

S t e t


  

       
    

            (10) 

 

 And the hazard function and cumulative hazard function are respectively 
 

  

   

 

2 2

2

1

2 1

( ) ; 0, 0, 0

1 (1 )

t t

t

te e

r t t

e


   

  

 
  

 
     

 

 

 

  

 
2

( ) ln ( ) log 1 1
t

R t S t e


 

  
       

      

            (11) 

 

where   and   are the shape and scale parameters of the distribution. The hazard 

function is bathtub shape if the parameter   1/2 and increasing if the parameter  

  > 1/2. 
 

 The third baseline distribution considered here is xgamma distribution. xgamma 

distribution is determined from the blend of exponential and gamma distributions (Sen  

et al., 2016). It is moreover utilized to analyze the alleviation times to understand the 

need for pain relieving treatment. 
 

 A continuous random variable T  is said to have xgamma distribution if its survival 

function is 
 

  

2 2

1
2

( ) ; 0, 0
1

t

t
t

S t e t

 
    

 
   

   

           (12) 

 

 And the hazard and cumulative hazard functions are respectively 
 

  

2 2
2

2 2

1
2

( )

1
2

t

r t
t

t

 
   

 

 
    

 

 

  

2 2

1
2

( ) log ( ) log
1

t
t

R t S t t

  
     

  
      

 
 
 
 

 

           (13) 
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 The hazard function of the xgamma distribution is increasing in 0t   and   with 

 
2

1
r t




  . Sen et al. (2017) also proposed the weighted xgamma distribution as a 

generalization of xgamma distribution, which is a useful tool for describing time-to-event 

data sets. 

 

5. PROPOSED MODELS 
 

 The unconditional survival function is obtained by replacing the cumulative hazard 

function of generalized Pareto distribution, generalized Rayleigh distribution and 

xgamma distribution in equation (6). Then, 
 

  

1 2

1 2 1 1 1 2 2 2
1 2

( , ) exp ln 1 ln 1
q q

q q q q

t t
S t t t t

       
                           

  

 
1/2

1 21 1 2 ( )
exp

q q qt t
  

     
         

(14) 

 

  

   
1 22 2

1 1 2 2

1 2( , ) exp log 1 1 log 1 1
q qt t

q qS t t e e

 
   

                                      
  

 
1/2

1 21 1 2 ( )
exp

q q qt t
  

     
        

(15) 

  

2 2
1 1

1 1 1

1 1
1

1 2
2 2

2 2
2 2 2

2 2
2

1
2log

1

( , ) exp

1
2log

1

q
q

q

q q

q
q

q

t
t

t

S t t
t

t

t

   
      
    
    
   
    

   
   
      
    
    
      

 

 
1/2

1 21 1 2 ( )
exp

q j qt t
  

     
      

 

(16) 
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 1 2

1 2 1 1 1 2 2 2 1 2
1 2

( , ) exp ln 1 ln 1
q q

q q q q q q q

t t
S t t t t t t

       
                             

 

(17) 
 

     
1 22 2

1 1 2 2

1 2 1 2( , ) exp log 1 1 log 1 1
q qt t

q q q q qS t t e e t t

 
   

                                        

 

(18) 
 

2 2
1 1

1 1 1

1 1
1

1 2
2 2

2 2

2 2 2

2 2 1 2
2

1
2log

1

( , ) exp

1
2log ( )

1

q

q

q

q q

q

q

q q q q

t
t

t

S t t
t

t

t t t

   
      
        
       

   
   
      
      
    
    
    

 

(19) 
 

 The equations (14), (15), and (16) are additive hazard shared inverse Gaussian frailty 

models with generalized Pareto distribution, generalized Rayleigh distribution, and 

xgamma distribution as the baseline distributions and are named as model-I, model-II, 

and model- III. Equations (17), (18), and (19) are without frailty models with generalized 

Pareto distribution, generalized Rayleigh distribution, and xgamma distribution as the 

baseline distributions and called as model-IV, model-V and model-VI. 

 

6. BAYESIAN APPROACH TO PARAMETERS ESTIMATION  

AND LIKELIHOOD FUNCTIONS 
 

 The likelihood function obtained by blending the failure times of the thq  individuals 

 1,2,3,...,q n  and censoring times by assuming independence between censoring 

scheme and individuals’ lifetimes is given by 
 

31 2 4

1 1 2 2 1 2 3 1 2 4 1 2
1 1 1 1

( , , ) ( , ) ( , ) ( , ) ( , )
nn n n

q q q q q q q q
q q q q

L f t t f t d f d t f d d
   

            (20) 

 

where  ,   and   are vectors of baseline parameters, regression coefficient and frailty 

distribution parameter. The likelihood function for without frailty is given as 
 

31 2 4

1 1 2 2 1 2 3 1 2 4 1 2
1 1 1 1

( , ) ( , ) ( , ) ( , ) ( , )
nn n n

q q q q q q q q
q q q q

L f t t f t d f d t f d d
   

      

    

(21) 
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where 1 2 3,  ,  n n n  and 4n  are the number of observations observed to lie in the range  

 1 2,  q qt t , lie in the ranges 1 1q qt d , 2 2q qt d ; 1 1q qt d , 2 2q qt d ; 1 1q qt d , 2 2q qt d  

and 1 1q qt d , 2 2q qt d  respectively and the contribution of the thq
 
individual in the 

likelihood function as 
 

  

2
1 2

1 1 2
1 2

( , )
( , )

q q

q q
q q

S t t
f t t

t t




 
 

 

  

1 2

2 1 2
1

( , )
( , )

q q

q q
q

S t d
f t d

t


 


 

 

  

1 2

3 1 2
2

( , )
( , )

q q

q q
q

S d t
f d t

t


 


 

and  

  4 1 2 1 2( , ) ( , )q q q qf d d S d d
     

             (22) 

 

 Substituting the unconditional survival function in equation (22) for different 

proposed baseline distributions and differentiating, we get the likelihood function given 

in equation (20). Similarly, we can obtain the likelihood function for without frailty. 
 

 The expression of the likelihood function in equation (20) is not easy to solve. So, 

Newton Raphson method will be utilized to estimate the parameters, but MLEs fail to 

converge as it involves the large dimensional optimization problem. Therefore, Bayesian 

approach was utilized to estimate the parameters involved in the models, which does not 

endure any such kind of troubles. 
 

 The joint posterior density of the parameters given failure times is given as 
 

  

 1 1 1 2 2 2 1 1 1 2 2 2

5

1 1 2 1 3 1 4 2 5 2 6 2 7
1

, , , , , , , ( , , , , , , , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p
p

L

g g g g g g g C


                 

        
 

 

where   . 1,2, ,7pg p    indicates the prior density function with known hyper 

parameters of corresponding arguments for baseline parameters and frailty variance; 

 .pC  is prior density function for regression coefficient p ; 
p

 represents a vector of 

regression coefficients except p , 1,2, ,p    a and likelihood function  .L  is given 

by equation (20) or (21). Here it is assumed that all the parameters are independently 

distributed. 
 

 Prior distributions are used as follows - gamma distribution with mean one and large 

variance ( , )    is used as prior distribution for frailty parameter. Normal distribution 

with mean zero and large variance is used as prior for the regression coefficient, say 
2 . 
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The same type of prior distributions considered in Ibrahim et al. (2001) and Sahu et al. 

(1997) and non-informative prior assumed as the baseline parameters since we do not 

have any information about the baseline parameters. The two non-informative prior 

distributions considered are 1 1( , )a b
 

and  2 2,  U a b . All the hyper-parameters 

1 2 1,  ,  a a b  and 2b  are assumed to be known. Here 1 1( , )a b
 
represent gamma distribution 

with shape parameter a1 and scale parameter 1b  and  2 2,  U a b  is the uniform 

distribution over the interval 2a  to 2b . We set hyper-parameters as   = 0.0001;  

2  = 1000; 1 1a  ; 1 0.0001b  ; 2 0a   and 2 100b  . 
 

 To estimate the parameters in the models fitted with the above prior density function 

and likelihood equation (20), Metropolis Hasting Algorithm and Gibbs Sampler was 

utilized. The convergence of the Markov chain to a stationary distribution is also 

observed by Geweke test and Gelman-Rubin Statistics as suggested by Geweke (1992) 

and Gelman and Rubin (1992). To check the behavior of the chain, to decide burn-in 

period and autocorrelation lag, we used trace plots, coupling from the past plots and 

sample autocorrelation plots respectively. Burn-in period is the practical minimization of 

the initial values effect on the posterior inference and chain converges to stationary 

distribution by discarding the initial portion of Markov chain sample. Running mean 

plots were also used to observe the convergence of the parameter values to a posterior 

mean of the parameters. Bayesian Information Criteria (BIC), Akaike Information 

Criteria (AIC), and Deviance Information Criteria (DIC) are utilized to compare the 

proposed models. Bayes factor also employed for comparison of Model rM  against 

Model vM . Markov Chain Monte Carlo approach is considered to compute Bayes factor 

as given by Kass and Raftery (1995). 

 

7. SIMULATION STUDY 
 

 To assess the execution of the Bayesian estimation method a simulation study was 

carried out, considering it as one covariate 1X  for the simulation purpose. 1X  was 

assumed to take normal distribution. As the Bayesian strategies are time expending, fifty 

sets of lifetimes were generated utilizing inverse transform procedure. Both the chains 

were iterated for 100000 times. Trace plots exhibited zigzag design indicating that 

parameters are moving freely. Gelman-Rubin scale reduction factor values were very 

close to one and p-values for Geweke test were huge, which sufficiently demonstrates 

that the chains achieve stationary distribution for both the prior sets. Further the 

convergence rate was not enormously diverse. There is no impact of prior distribution on 

posterior summaries because estimates of parameters were about the same for both sets of 

priors. For both the chains the results are to some degree comparative so the analysis was 

displayed as one chain with 1 1( , )a b as prior to baseline distribution for all the models. 

Table 2, 3, and 4 present the posterior summaries of generalized Pareto, generalized 

Rayleigh and xgamma distributions as baseline distribution. It provides estimates 

(posterior means), standard error and upper and lower credible limits. 
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8. DATA ANALYSIS 
 

 The applicability of the models was checked by applying them to the kidney infection 

data. The urinary organ infection knowledge has appeared in McGilchrist and Aisbett 

(1991). It is associated with return time to infection during the course of insertion of the 

tube for thirty-eight urinary organ patients due to mistreatment with portable dialysis 

instrument. For every patient, initial and second return times (in days) of infection 

attributable to infection from the time of insertion of the tube till it is to be removed are 

recorded. The tube ought to be removed for reasons apart from urinary organ infection, 

and this will be regarded as censoring. Therefore, survival times for a patient given in the 

study is also first or second infection time or censoring time. The value zero is employed 

for censoring and one is employed for the incidence of infection. Once the incidence or 

censoring of the primary infection occurred, decent time (10 weeks interval) was allowed 

for the infection to be cured before the tube was inserted for the second time. So, the 

primary and second return times will be thought of as independent except the common 

frailty element. The information comprises 3 risk variables - age, sex, and disease type- 

GN, AN, and PKD, where GN, AN, and PKD are brief forms of Glomerulo Nephritis's, 

Acute Nephritis's, and Polycyatic Kidney Disease. The infection times of every patient 

share an equivalent value of the covariates. Let 1T  and 2T  be representing first and 

second recurrences of infection. Five covariates age, sex, and presence or absence of 

disease type GN, AN and PKD are portrayed by 1 2 3 4,  ,  ,  X X X X  and 5X . 
 

 First, we check the goodness of fit for the kidney infection data by considering 

Kolmogorov Smirnov test and the p-values obtained for the first and second recurrences 

are large enough to say that there is no reason to reject the hypothesis that the first and 

second recurrence time to follow one of the distributions with the survival function as 

given in equations (8), (10) and (12). The corresponding p-values are given in Table 1. 
 

 The outlines of the posterior results are displayed in Table 5, 6, 7, 8, 9 and 10. These 

tables consist of an estimate of parameters (posterior mean), which is highlighted in the 

1st column, standard error in the 2nd column, credible limits in 3rd and 4th columns, 

Gelman Rubin values, Geweke values and p-values are in 5th, 6th and 7th columns. For 

all the frailty models, the value zero was not a credible value for all the credible intervals 

of the regression coefficients. So, all the covariates are significant in all frailty models, 

whereas, the value zero in the credible interval of the regression coefficient of 4X  in 

without frailty model, shows that Acute Nephritis is not significant covariates for a 

kidney infection. The negative value of regression coefficient 2  
implies that females 

have a lower risk of infection than males, while positive values of regression coefficients 

3 , 4  and 5 , shows the presence of disease types like Glomerulo Nephritis, Intense 

Nephritis, and Polycystic Kidney disease can increase kidney infection.  
 

 The comparison between the proposed models is done by utilizing AIC, BIC and DIC 

values given in Table 11. Table 11 and Table 12 shows that frailty models are better than 

without frailty models. The AIC, BIC and DIC values for model-I and model-III are 

comparatively much lesser than that for other models, so model-I or model-III may be 

better than model-II, model-IV, model-V and model-VI. The distinction between AIC, 
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BIC and DIC values for model-I and model-III are exceptionally little, so AIC, BIC and 

DIC values are not commendable to take a choice between the model-I and model-III. 
 

 Under the present study Bayes factor rvDf  is considered for comparing the models r 

and v. 2rvDf   log rvB  for the model-I against model-II is 21.7808; for model-I 

against model-III is 12.0108; for model-II against model-III is -9.7700. On comparison of 

model-I, model-II and model-III, 12Df  and 32Df  both are about 10 which manifest that 

model-II is not better than model-I and model-III affirming our earlier result. For model-I 

and model-III, 13D  is 12.010 as given in Table 11, therefore model-I is better than 

model-III. 
 

 Hence, from all the demonstrated comparison criteria we can say model-I is better 

than model-II, model-III, model-IV, model-V and model-VI for modeling kidney 

infection data. 

 

9. DISCUSSION 
 

 In this study, we examined the additive hazard shared inverse Gaussian frailty model 

with three baseline distributions such as generalized Pareto, generalized Rayleigh and 

xgamma distributions and without frailty models based on the same baseline distribution. 
 

 The Metropolis-Hastings and Gibbs sampler was utilized to fit all the proposed 

models. Kidney infection data was analyzed using the proposed models and the finest 

model is suggested. Self-composed programs in R statistical software have been utilized 

to perform the analysis. 
 

 All the demonstrated comparison criteria exhibits that additive hazard shared inverse 

Gaussian frailty demonstrated with generalized Pareto baseline is better for modeling of 

kidney infection data rather than generalized Rayleigh and xgamma as baseline. The 

estimates of frailty parameters   are high in all three models which are 3.7217, 34.923 

and 7.4710 for generalized Pareto, generalized Rayleigh and xgamma baseline models 

respectively. This demonstrates that there is a strong evidence of high degree of 

heterogeneity in the population of patients. A few patients are anticipated to be 

exceptionally inclined to infection compared to others with the same covariate values. 

We can further establish that there is a solid positive relationship between the two 

infection times for the same patient. Now, we have another additive shared frailty model 

with generalized Pareto distribution as baseline distribution for the analysis of kidney 

infection data. 
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APPENDIX: TABLES AND FIGURES 

 

Table 1 

p-values of K-S Statistics for Goodness of Fit Test for Kidney Infection Data Set 

Distribution 
Recurrences Time 

First Second 

Generalized Pareto 0.1398 0.1229 

Generalized Rayleigh 0.2628 0.5722 

Xgamma 0.2630 0.5721 

 

Table 2 

Inverse Gaussian Frailty with Generalized Pareto Distribution as Baseline 

(Simulation for Model-I) 

Parameter 

(values) 
Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

Values 

Geweke 

Values 
p-values 

Burn in period = 7800 ; lag=190 

1 (0.0031) 0.0032 0.0003 0.0026 0.0038 0.9999 0.0035 0.5014 

2 (0.0031) 0.0030 0.0005 0.0020 0.0039 1.0001 0.0025 0.5010 

1 (21.40) 21.428 0.5939 20.446 22.368 1.0001 -0.0158 0.4936 

2 (20.71) 20.674 20.674 19.749 21.617 1.0017 0.0039 0.5015 

1 (0.006) 0.0059 0.0006 0.0050 0.0069 1.0001 -0.0004 0.4998 

2 0.0060 0.0059 0.0005 0.0050 0.0069 1.0011 0.0064 0.5025 

 (3.72) 3.7183 3.7183 3.6298 3.8114 1.0006 0.0018 0.5007 

1  (-0.108) -0.1086 0.0232 -0.1555 -0.0656 1.0009 0.0019 0.5047 

 

Table 3 

Inverse Gaussian Frailty with Generalized Rayleigh Distribution as Baseline 

(Simulation for Model II) 

Parameter 

(values) 
Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

values 

Geweke 

values 
p-values 

Burn in period = 7100 ; lag=205 

1 (6.299) 6.2992 0.0319 6.2390 6.3607 1.0003 -0.0097 0.4961 

2 (4.61) 4.6154 0.0573 4.5200 4.7046 1.0014 0.0172 0.5068 

1 (0.0027) 0.0027 0.0004 0.0020 0.0036 1.0054 0.0088 0.5035 

2 (0.0036) 0.0036 0.0004 0.0030 0.0046 1.0011 -0.0047 0.4981 

 (35.12) 35.118 0.0555 35.025 35.215 0.9999 0.0087 0.5034 

1  (0.0016) 0.0016 0.0004 0.0010 0.0025 1.0098 0.0061 0.5024 
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Table 4 

Inverse Gaussian Frailty with xgamma Distribution as Baseline  

(Simulation for Model III) 

Parameter 

(values) 
Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

Values 

Geweke 

values 
p-values 

Burn in period = 6600 ; lag=240 

1 (0.008) 0.0080 0.0003 0.0074 0.0087 0.9999 -0.0021 0.4991 

2 (0.0091) 0.0090 0.0005 0.0080 0.0099 1.0003 -0.0030 0.4987 

 (7.49) 7.4955 0.0585 7.4047 7.5955 1.0010 -0.0093 0.4962 

1  (-0.057) -0.0568 0.0071 -0.0693 -0.0457 1.0089 0.0031 0.5012 

 

Table 5 

Posterior Results for the Kidney Infection Data Set for Model I 

Parameter Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

values 

Geweke 

values 
p-values 

Burn in period = 7800 ; lag=160 

1  0.0032 0.0003 0.0025 0.0038 1.0001 -0.0022 0.4990 

2  0.0030 0.0005 0.0020 0.0039 1.0004 -0.0058 0.4976 

1  21.391 0.5780 20.451 22.338 1.0025 -0.0044 0.4982 

2  20.702 0.5647 19.735 21.655 1.0042 0.0052 0.5021 

1  0.0059 0.0005 0.0050 0.0069 1.0025 -0.0012 0.4994 

2  0.0059 0.0005 0.0050 0.0069 0.9999 -0.0050 0.4979 

  3.7217 0.0529 3.6274 3.8135 1.0058 -0.0199 0.4920 

1  -0.1127 0.0154 -0.1469 -0.0842 1.0000 -0.0047 0.4981 

2  
-6.6615 1.0207 -8.2949 -4.4569 1.0071 0.0057 0.4981 

3  
2.5510 0.0521 2.4581 2.6410 1.0016 -0.0030 0.4987 

4  
2.8489 0.0531 2.7558 2.9455 1.0041 -0.0066 0.4973 

5  
0.2979 0.0529 0.2068 0.3879 0.9999 0.0024 0.5009 
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Table 6 

Posterior Results for the Kidney Infection Data Set for Model II 

Parameter Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR  

Values 

Geweke  

Values 
p-values 

Burn in period = 15000 ; lag=110 

1  6.5199 0.0315 6.4587 6.5814 1.0000 0.0004 0.5001 

2  4.6087 0.0549 4.5177 4.7034 1.0003 -0.0034 0.4986 

1  0.0031 0.0004 0.0022 0.0039 1.0002 -0.0030 0.4987 

2  0.0038 0.0038 0.0030 0.0048 1.0001 -0.0042 0.4983 

  34.923 0.5151 33.986 35.830 1.0029 -0.0076 0.4969 

1  0.0019 0.0005 0.0010 0.0029 1.0010 0.0024 0.5009 

2  
-2.7290 0.3649 -3.4217 -2.0477 1.0000 0.0053 0.5009 

3  
0.0301 0.0053 0.0207 0.0393 1.0008 -0.0092 0.4963 

4  
0.6691 0.0530 0.5773 0.7615 1.0004 0.0008 0.5003 

5  
0.0399 0.0052 0.0309 0.0491 1.0028 -0.0041 0.4983 

 

Table 7 

Posterior Results for the Kidney Infection Data Set for Model III 

Parameter Estimate SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

values 

Geweke 

values 
p-values 

Burn in period = 7600 ; lag=180 

1  0.0080 0.0003 0.0073 0.0086 1.0006 0.0057 0.5022 

2  0.0090 0.0005 0.0080 0.0099 1.0004 0.0025 0.5103 

  7.4710 0.5515 6.5426 8.4171 1.0020 -0.0002 0.4999 

1  -0.0593 0.0065 -0.0692 -0.0464 1.0034 -0.0150 0.4940 

2  
-2.8775 0.4455 -3.6445 -1.9899 1.0028 0.0059 0.4940 

3  
1.1416 0.0514 1.0501 1.2294 1.0014 0.0056 0.5022 

4  
1.9744 0.4898 1.0812 2.8979 1.0034 0.0020 0.5081 

5  
0.3873 0.0558 0.2923 0.4835 1.0000 -0.0053 0.4978 
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Table 8 

Posterior Results for the Kidney Infection Data Set for Model IV 

Parameters Estimates SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR  

Values 

Geweke  

Values 
p-values 

Burn in period = 8200 ; lag=145 

1  0.5397 0.0336 0.4737 0.6093 1.0001 -0.0054 0.4978 

2  0.5818 0.0572 0.4952 0.6830 1.0000 0.0026 0.5010 

1  12.424 0.5991 11.470 13.387 1.0000 -0.0113 0.4954 

2  10.065 0.5746 9.0509 10.947 1.0000 -0.0028 0.4988 

1  0.0069 0.0005 0.0058 0.0077 1.0012 -0.0023 0.4990 

2  0.0077 0.0005 0.0068 0.0087 1.0003 -0.0108 0.4956 

1  -1.2943 0.4881 -2.1274 -0.5050 1.0005 0.0065 0.5026 

2  
-0.0974 0.0578 -0.1947 -0.0035 1.0020 0.0150 0.5026 

3  
0.5371 0.0560 0.4450 0.6324 1.0009 6.3e-05 0.5000 

4  
2.7692 0.0542 2.6757 -0.5050 1.0000 -0.0040 0.4983 

5  
1.3210 0.0585 1.2293 1.4205 1.0014 0.0021 0.5008 

 

Table 9 

Posterior Results for the Kidney Infection Data Set for Model V 

Parameters Estimates SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

Values 

Geweke 

Values 
p-values 

Burn in period = 6200 ; lag=280 

1  0.3200 0.0033 0.3136 0.3263 1.0000 0.0013 0.5005 

2  0.5095 0.0054 0.5003 0.5196 1.0012 -0.0011 0.4995 

1  0.0027 0.0003 0.0020 0.0035 1.0001 -0.0114 0.4954 

2  0.0033 0.0004 0.0023 0.0039 1.0000 -0.0006 0.4997 

1  -0.1076 0.0043 -0.1136 -0.0982 1.0091 -0.0010 0.4995 

2  
-4.4828 0.0635 -4.5918 -4.3689 0.9999 0.0065 0.4995 

3  
0.0300 0.0049 0.0209 0.0389 1.0004 0.0011 0.5046 

4  
0.3049 0.0518 0.2087 0.3947 1.0000 0.0016 0.5066 

5  
0.0307 0.0052 0.0214 0.0214 0.9999 -0.0004 0.4998 
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Table 10 

Posterior Results for the Kidney Infection Data Set for Model VI 

Parameters Estimates SE 

Lower 

Credible 

Limit 

Upper 

Credible 

Limit 

GR 

Values 

Geweke 

Values 
p-values 

Burn in period = 6500 ; lag=270 

1  0.0163 0.0018 0.0128 0.0202 1.0003 0.0013 0.5005 

2  0.0181 0.0026 0.0130 0.0232 1.0003 0.0032 0.5012 

1  -0.0836 0.0050 -0.0928 -0.0725 1.0030 -0.0085 0.4965 

2  
-4.5946 0.5188 -5.5136 -3.4842 1.0006 -0.0007 0.4965 

3  
0.0600 0.0050 0.0515 0.0693 1.0022 -0.0099 0.4960 

4  
0.0503 0.0050 0.0415 0.0599 1.0001 0.0102 0.4959 

5  
-3.8465 0.6197 -4.8477 -2.4814 1.0033 -0.0228 0.4908 

 

Table 11: AICAIC, BIC and DIC Values for six Models 

Baseline 

Distribution 
Model AIC BIC DIC -logLikelihod 

Generalized 
Pareto 

With Frailty 687.9486 707.5996 667.2012 -331.9743 

Without Frailty 713.0356 731.0491 731.0491 -345.5178 

Generalized 
Rayleigh 

With Frailty 705.9384 722.3142 689.9339 -342.9692 

Without Frailty 707.7898 722.528 692.9076 -344.8949 

Xgamma 
With Frailty 692.8048 705.9055 680.339 -338.4024 

Without Frailty 728.9751 740.4382 720.553 -357.4875 

 

Table 12: Bayes Factor Values and Decision for Shared Frailty Models  

Fitted to the Kidney Data Set 

Numerator Model against 

Denominator Model 
Brv= 2loge(Brv) range 

Evidence against 

Model in Denominator 

I against II 21.7808 ≥ 10 Very strong positive 

I against III 12.0108 ≥ 10 Very strong positive 

I against IV 24.2951 ≥ 10 Very strong positive 

I against V 26.0028 ≥ 10 Very strong positive 

I against VI 53.9072 ≥ 10 Very strong positive 

II against III -9.7700 < 0 Strong negative 

II against IV 2.5143 ≥ 2 and ≤ 6 Positive 

II against V 4.2220 ≥ 2 and ≤ 6 Positive 

II against VI 32.1264 ≥ 10 Very strong positive 

III against IV 12.2843 ≥ 10 Very strong positive 

III against V 13.9920 ≥ 10 Very strong positive 

III against VI 41.8964 ≥ 10 Very strong positive 

IV against V 1.7076 ≥0 and ≤ 2 
Not worth more than 

a bare mention 

IV against VI 29.6121 ≥ 10 Very strong positive 

V against VI 27.9044 ≥ 10 Very strong positive 
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Figure 1:  (a) Trace Plot   

   (b) Coupling from the Past Plot  

   (c) ACF Plot    

   (d) Running Mean Plot 

 

 

 


