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Abstract 

In this article, we propose gamma and inverse Gaussian frailty shared models with Akash distribution as 

baseline to analyze the bivariate survival data set of Mc Gilchrist and Aisbett (1991). Bayesian approach 

of Markov Chain Monte Carlo technique was employed to estimate the parameters involves in the 

models. The better model also suggested for the data. 
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1. Introduction 

In survival analysis Cox proportional hazard model by Cox (1972) [2] is the most commonly 

used method. It is assumed that the study population is homogeneous. But In many 

applications, consider populace cannot be expected to be homogeneous but must be considered 

as a heterogeneous sample, i.e. a blend of people with different hazards. For illustration, in 

many cases it is possible to include all the covariates related to the illness of interest due to 

economical reasons or sometimes the significance of a few covariates is still obscure. The 

missing or unobserved covariate is termed as “frailty” which account for heterogeneity in the 

population. The notion of frailty provides a convenient way to introduce random effects, 

dependence and unobserved heterogeneity into models for survival data. The term frailty itself 

was introduced by Vaupel et al. (1979) [14] in univariate survival models and the model was 

substantially promoted by its application to multivariate survival data in a seminal paper by 

Clayton (1978) [1] (without using the notion “frailty”) on chronic disease incidence in families. 

The frailty approach could be a statistical modeling concept which points to account for 

heterogeneity, caused by unmeasured covariates. In statistical terms, a frailty model may be a 

random effect model for time-to-event data, where the random effect (the slightness) features a 

multiplicative impact on the baseline hazard function. Hanagal (2007) [3] proposed gamma 

frailty regression models in mixture distribution. Hangal and Shama (2013) [7] also suggested 

gamma shared frailty for modeling heterogeneity in bivariate survival data. Hanagal and 

Pandey (2017) [6] considered inverse Gaussian distribution as frailty parameter and compared 

the models by using kidney infection data. 

In this manuscript, we compare shared gamma frailty model, shared inverse Gaussian frailty 

model and the model without frailty i.e. Cox proportional hazard model by using Bayesian 

method of comparison. 

 

2. General shared frailty model 

For the shared frailty model, it is assumed that survival times are conditionally independent, 

for given shared frailty. That means, dependence between survival times is only due to 

unobservable covariates or frailty. When there is no variability in the distribution of frailty 

variable it has a degenerate distribution and when the distribution of it is not degenerate the 

dependence is positive. 

Suppose there are n clusters and that cluster i has ni observations and associates with the 

unobserved frailty Mi (1 ≤ i ≤ n). The vector Xij (1 ≤ i ≤ n, 1 ≤ j ≤ ni) contains the covariate 

information of the event time Tij of the jth observation in the ith cluster. Conditional on the 

frailty term Mi, the survival times in cluster i (1 ≤ i ≤ n) are assumed to be independent and 
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their hazard functions and survival functions to be of the form 

 

0( | , ) ( ) ijX

ij ij i i ijh t X M M h t e


  and 0 ( )
( | , )

Xij
jm H t e

ij j jS t m X e



             (2.1) 

where 0 ( )ijh t  denotes the baseline hazard function, 0 ( )H t  is cumulative baseline hazard function at time t > 0,and   is a 

vector of regression coefficients. The frailties Mi (i = 1... n) are assumed to be independently and identically distributed random 

variables with density function f (m). The frailty density depends on unknown parameters to be estimated. The main assumption of 

a shared frailty model is that all individuals in cluster i share the same value of frailty Mi (i = 1 . . . n), and this is why the model is 

called the shared frailty model.  

Under the assumption of conditional independence, bivariate conditional survival function for given frailty Mj=mj at times t1j >0 

and t2j >0 is, 
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            (2.2) 

 

Unconditional bivariate survival function at times t1j >0 and t2j >0 can be obtained by integrating over frailty variable Mj having 

the probability function f (mj), for jth individual. 
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                   (2.3) 

 

Where (.)
jML  is Laplace transform of distribution of frailty variable Mj for jth individual. Here onwards we represent S (t1j, t2j | 

Xij) as S (t1j, t2j). 

Now we consider frailty distributions one by one. First, gamma distribution is considered because the gamma distribution fits well 

to failure data from a computational and analytical point of view. It is easy to derive the closed form expression of survival and 

hazard function. For identifiability, we assume M has expected value equal to one. Under this restriction, Laplace transform of a 

gamma distribution is given by, 
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                          (2.4) 

 

With variance of M is . 

Replacing Laplace transform in equation (2.4), we get the unconditional bivariate survival function for jth individual at times t1j >0 

and t2j >0 as, 

 
1

1 2 01 1 02 2( , ) [1 (( ( ) ( )) ]ijX

j j j jS t t H t H t e
 




                    (2.5) 

 

The gamma distribution is most commonly used frailty distribution because of its mathematical convenience. However, it has 

drawbacks (see Kheiri et al. 2007) [10] for example, it may weaken the effect of covariates. Alternative to the gamma distribution 

Hougaard (1984) [8] introduced inverse Gaussian as a frailty distribution. It provides much flexibility in modeling.  

Under the identifiability condition, Laplace transform of inverse Gaussian distribution is, 
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With variance of M is . 

Replacing Laplace transform in equation (2.6), the unconditional bivariate survival 

Function for j th individual at times t1j >0 and t2j >0 is, 
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The bivariate survival function in the case when the frailty variable is degenerate is given by 

 

01 1 02 2[ ( ( ) ( ))]

1 2( , )
Xij

j je H t H t

j jS t t e


 
                      (2.8) 

 

3. Baseline distribution 

The baseline distribution used here is Akash Distribution proposed by Shanker (2015) [13], which is the modification of Lindley 

distribution (Lindley, 1958) [11]. Akash distribution is able to fit in data obtained from medical sciences and engineering.  

A continuous random variable T is said to follow the Akash distribution with the parameter  if its survival function is, 
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And the hazard function and the cumulative hazard function as 
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The hazard function is increasing and more flexible than Lindley distribution and exponential distribution. That is why we choose 

as baseline distribution. 

 

4. Proposed Models 

Substituting the cumulative hazard function in equations (2.5), (2.7) and (2.8), we get the unconditional survival function of 

bivariate random variable (T1j, T2j), then 
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Equations (4.1) and (4.2) are gamma shared frailty and inverse Gaussian shared frailty models with baseline Akash distribution 

and called as model-I and model-II, equation (4.3) is without frailty with baseline Akash distribution and called as model-III. 

 

5. Methodology 

The likelihood function associated with the failures times and censoring variables ij  (i =1,2; j = 1,2,…n) based on the survival 

function is given as 
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Where ,   and   are the vector of baseline parameter, the vector of regression coefficients, and the frailty parameter. For 

without frailty model likelihood function is 
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Where n1, n2, n3, and n4 are the number of observations observed to falls in the range t1j ≤ j , t2j ≤ j ; t1j ≤ j , t2j > j ; t2j > j , t1j 

≤ j ; and t1j > j j, t2j > j , respectively and the contribution of the jth individual in the likelihood as 
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Substituting distribution function S (t1j, t2j) and by differentiating we get the likelihood function given by equation (5.1). Similarly 

we get the likelihood function for without frailty model. 

The likelihood function obtained in equation (5.1) is not easy to solve since it involves a large number of parameters in the model 

by using Newton-Raphson method, the MLEs is not converge. Thus, we move to the Bayesian approach, which does not suffer 

any kind of such difficulties. 

The joint posterior density function of parameters for given failure times is obtained as, 

 
5
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Where gi (.) (i = 1, 2, 3) indicates the prior density function with known hyper parameters of corresponding arguments for baseline 

parameters and frailty variance; pi(.) is prior density function for regression coefficient βi and likelihood function L (.) is given by 

equation (5.1) or (5.2). Here we assume that all the parameters are independently distributed. 

The non-informative prior was used for frailty parameters and regression coefficients. Since we do not have prior information on 

baseline parameters, it is assumed to be flat. The prior distribution for the parameters used is as follows- 

For frailty parameter ( ) ~  (0.0001, 0.0001) 

For regression coefficients ( ) ~ Normal (0, 1000) 

For baseline parameters (  ) ~  (1, 0.0001) and U (0, 100) 

 

We have fitted the Bayesian model with the above prior density functions and likelihood function (5.1) using the MCMC methods 

such as, the Metropolis-Hastings algorithm. We have monitored convergence of Markov chain to a stationary distribution by 

Gelman-Rubin convergence statistic and Geweke test. Trace plots, coupling from the past plots and sample autocorrelation 

function plots have been used to check the behavior of the chain, to decide burn-in period and sample autocorrelation lag 

respectively. 

In order to compare the proposed models we have used several Bayesian model selection criteria such as, Bayesian Information 

Criteria (BIC), Akaike Information Criteria (AIC) and Deviance Information Criteria (DIC). Also we have used the Bayes factor 

Bjk for comparison of the modelsMj against Mk. To compute the Bayes factor we have considered MCMC approach given in Kass 

and Raftery (1995) [9]. 

 

6. Data Analysis 

Kidney infection data of McGrilchrist and Aisbett (1991) [12] was utilized demonstrate the Bayesian estimation technique. The 

data are comprises of infection recurrence times at the point of insertion of the catheter for 38 kidney patients using portable 

dialysis equipment. For each patient, the occurrences of infection for the first and second time were recorded. It may be removed 

other than infection and regarded as censoring. So the first or second infection time or censoring time may be the survival times. 

To cure the first infection sufficient time was permitted before the catheter was inserted for the second time. So the first and 

second recurrence times are taken to be independent apart from the common frailty component. The data of the risk variables are 
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age, sex and disease type GN, AN and PKD where GN, AN and PKD are brief forms of Glomerulo Neptiritis, Acute Neptiritis 

and Polycystic Kidney Disease.  

Let T1 and T2 be the first and the second recurrence time to infection. Five covariates age, sex and presence or absence of disease 

type GN, AN and PKD are represented by X1, X2, X3, X4, and X5. 

First we check goodness of fit to the data for frailty models and then apply the Bayesian estimation procedure. Kolmogorov-

Smirnov test was considered to check goodness of fit for the kidney infection data set test and the p-values also obtained for T1 

and T2 separately. Corresponding p-values are displayed in Table 1. 

 
Table 1: p-values of K-S Statistics for goodness of fit test for Kidney Infection data set 

 

Model 
Recurrences times 

First Second 

Gamma frailty 0.9024 0.3720 

Inverse Gaussian Frailty 0.4490 0.1229 

 

The p-values are large enough to say there is no statistical evidence to reject the hypothesis that first and second recurrence times 

follow one of the distributions with survival functions given in Eqs. (4.1) and (4.2). 

The posterior summary is displayed in Tables 2-4. In these tables second and third columns represent estimate (posterior mean) 

and standard error whereas last three columns represent Gelman-Rbin values, Geweke values and p-values.  

 
Table 2: Posterior summary for model-I 

 

Parameter Estimate SE Lower Credible Limit Upper Credible Limit GR values Geweke values p-values 

Burn-in period = 6700 ; autocorrelation lag = 125 

1  
0.0711 0.0031 0.0648 0.0775 1.0000 -0.0022 0.4991 

2
 

0.0519 0.0049 0.0417 0.0595 1.0001 -0.0031 0.4987 


 

1.2647 0.0506 1.1774 1.3606 1.0037 0.0060 0.5024 

1  
0.0301 0.0051 0.0207 0.0391 1.0030 -0.0079 0.4968 

2  
-2.7443 0.3646 -3.4104 -1.9932 1.0015 0.0110 0.4968 

3  
0.4500 0.0520 0.3569 0.5434 1.0021 -0.0006 0.4997 

4  
0.6125 0.0520 0.5180 0.7020 1.0003 0.0116 0.5046 

5  
-0.3989 0.1191 -0.6002 -0.1667 1.0125 -0.0048 0.4980 

 

Table 3: Posterior summary for model-II 
 

Parameter Estimate SE Lower Credible Limit Upper Credible Limit GR values Geweke values p-values 

Burn-in period = 6500 ; autocorrelation lag = 170 

1  
0.0904 0.0032 0.0841 0.0970 1.0006 0.0047 0.5019 

2
 

0.0612 0.0053 0.0508 0.0697 1.0002 -0.0018 0.4992 


 

1.9016 0.4891 1.0972 2.9179 1.0001 0.0009 0.5003 

1  
0.0197 0.0049 0.0108 0.0289 0.9999 0.0089 0.5035 

2  
-2.4555 0.3558 -3.1231 -1.7951 1.0004 -0.0061 0.5035 

3  
0.4473 0.0504 0.3570 0.5440 1.0001 0.0115 0.5045 

4  
0.6135 0.0527 0.5176 0.7012 1.0001 0.0008 0.5003 

5  
-1.4045 0.4975 -2.2576 -0.4637 1.0004 -0.0075 0.4969 

 

Table 3: Posterior summary for model-III 
 

Parameter Estimate SE Lower Credible Limit Upper Credible Limit GR values Geweke values p-values 

Burn-in period = 6200; autocorrelation lag = 240 

1  
0.0623 0.0029 0.0561 0.0678 1.0009 0.0079 0.5031 

2
 

0.0429 0.0040 0.0338 0.0494 1.0008 -0.0152 0.4939 

1  
0.0164 0.0039 0.0104 0.0250 1.0005 -0.0044 0.4982 

2  
-2.5814 0.2383 -3.0742 -2.1532 1.0002 0.0077 0.4982 

3  
0.0318 0.0050 0.0226 0.0411 1.0017 0.0094 0.5037 
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4  
0.8290 0.0494 0.7399 0.9182 1.0040 0.0023 0.5009 

5  
-2.2982 0.3937 -3.1220 -1.5989 1.0000 0.0103 0.5041 

 

From Tables 2-4, the value zero is not a credible value for all credible intervals for all the models. The negative value of 

regression coefficient 2  indicates that female has lower risk of infection than male. 

 
Table 5: AIC, BIC and DIC values for all models 

 

Baseline distribution Model AIC BIC DIC Log-likelihood 

Akash Distribution 

Gamma Frailty 689.0755 702.1761 676.6887 -336.5377 

Inverse Gaussian Frailty 682.4093 695.5100 671.0884 -333.2046 

Without Frailty 706.0754 717.5385 697.8843 -346.0377 

 

The AIC, BIC and DIC values for model-I and model-II are comparatively much smaller than for model-III, so frailty models are 

better than without frailty model. The difference between AIC, BIC and DIC values for model-I and model-II is very small, so 

AIC, BIC and DIC values are not enough to take the decision between the model-I and model-II. Same thing hold for log 

likelihood. Now Bayes factor Bjk was considered for comparing the models j and k. Djk = 2 ln (Bjk) for the model-II against 

model-I is 5.4129; for model-II against model-III is 27.2213 and for model-I against model-III is 21.8083 given in Table (6).  

 
Table 6: Bayes factor for all models 

 

Numerator model against denominator model Djk=2loge(Bij) range Evidence against model in denominator 

II against I 5.4129 ≥2 and ≤6 Positive 

II against III 27.2213 ≥ 10 Very strong positive 

I against III 21.8083 ≥ 10 Very strong positive 

 

Thus from all the model comparison criteria we can say model-II is better than model-I and model-III for modeling kidney 

infection data. 

 

7. Results and Discussion 

In the present paper, we proposed new model of gamma frailty and inverse Gaussian frailty with Akash distribution as baseline 

distribution. 

We have used the Metropolis–Hastings algorithm to fit all the models. We analyzed kidney infection data using our proposed 

models and the best model is suggested. We have used self-written programs in R statistical software to perform analysis. 

For all the models, the value zero was not a credible value for the all the credible intervals. So, all covariates are significant. 

Negative value of regression coefficient of X2 indicating that female has lower risk of infection than male. All the model 

comparison criteria suggested that inverse Gaussian frailty model with Akash baseline distribution is better for modeling of 

kidney infection data than other models. The estimates of frailty variance are high in the frailty models which are 1.2647 and 

1.9016 for gamma and inverse frailty models respectively. This indicates that there is a strong evidence of high degree of 

heterogeneity in the population of patients.  

The proposed model suggested that the frailty variance in two proposed models are very high as compare to the earlier frailty 

model proposed in Mc Grilchrist and Aisbett (1991) [12] on log-normal frailty, Hanagal and Dabade (2012) [4] on compound 

Poisson frailty and Hanagal and Dabade (2013) [5] on gamma frailty models.  

 

8. Conclusion 

Shared gamma frailty model and shared inverse Gaussian frailty model are better than without frailty to analyze Kidney infection 

data. 
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