
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325117588

An efficient software verification using multi-layered software verification

tool

Article  in  International Journal of Engineering & Technology · April 2018

DOI: 10.14419/ijet.v7i2.21.12465

CITATIONS

18
READS

399

3 authors:

s.V.Gayetri Devi

Bharath Institute of Higher Education and Research

10 PUBLICATIONS   57 CITATIONS   

SEE PROFILE

Nalini Chidambaram

SIMATS School of Engineering

95 PUBLICATIONS   222 CITATIONS   

SEE PROFILE

Kumar Narayanan

Vels Institute of ScienceTechnolgy and Advanced Studies (VISTAS)

51 PUBLICATIONS   389 CITATIONS   

SEE PROFILE

All content following this page was uploaded by s.V.Gayetri Devi on 22 July 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325117588_An_efficient_software_verification_using_multi-layered_software_verification_tool?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325117588_An_efficient_software_verification_using_multi-layered_software_verification_tool?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Svgayetri-Devi?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Svgayetri-Devi?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Svgayetri-Devi?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nalini-Chidambaram-2?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nalini-Chidambaram-2?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nalini-Chidambaram-2?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kumar-Narayanan?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kumar-Narayanan?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kumar-Narayanan?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Svgayetri-Devi?enrichId=rgreq-ca213cd8624187843b484cc12495375b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTExNzU4ODtBUzoxMTgwNzIwMDY4MzM3NjY5QDE2NTg1MTcwMDk5ODE%3D&el=1_x_10&_esc=publicationCoverPdf


 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (2.21) (2018) 454-457 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET 

 

Research paper  

 

 

An efficient software verification using multi-layered  

software verification tool 
 

S.V. Gayetri Devi1*, C. Nalini2, N. Kumar3 

 
1Department of Computer Science & Engineering, Bharath Institute of Higher Education and Research, Bharath University, Chennai. 
2Department of Computer Science & Engineering, Bharath Institute of Higher Education and Research, Bharath University, Chennai. 
3Department of Computer Science & Engineering, Vels Institute of Science, Technology & Advanced Studies(VISTAS), Chennai, India. 

*Corresponding author E-mail:gayetri.venkhatraman@gmail.com 

 
  

Abstract 

 
Rapid advancements in Software Verification and Validation have been critical in the wide development of tools and techniques to 

identify potential Concurrent bugs and hence verify the software correctness. A concurrent program has multiple processes and shared 

objects. Each process is a sequential program and they use the shared objects for communication for completion of a task. The primary 

objective of this survey is retrospective review of different tools and methods used for the verification of real-time concurrent software. 

This paper describes the proposed tool ‘F-JAVA’ for multithreaded Java codebases in contrast with existing ‘FRAMA-C’ platform, 

which is dedicated to real-time concurrent C software analysis. The proposed system is comprised of three layers, namely Programming 

rules generation stage, Verification stage with Particle Swarm Optimization (PSO) algorithm, and Performance measurement stage. It 

aims to address some of the challenges in the verification process such as larger programs, long execution times, and false alarms or 

bugs, and platform independent code verification 

 
Index Terms: Verification, concurrency, contracts, swarm optimization. 

 

1. Introduction 

Verification and Validation are vital actions in the development of 

software products [3]. Verification ensures that the software is 

aligned with its desired requirements, meets particular necessities, 

completeness, and performance according to specifications [4]. It 

strives to fulfill consistency, the correctness of program 

translations as well as behavioral correctness [6]. Validation is the 

determination of the correctness of the software at every stage of 

the development cycle [5].  

The two categories of software verification are Static analysis and 

Dynamic analysis. Static analysis is the verification of artifacts in 

software and locating abundant defects using templates. This 

analysis is highly automated and completely relies on testing 

tools, which can be applied only to source code and some specific 

artifacts [18]. Dynamic analysis performs software system 

characteristic analysis and evaluation based on its real efforts of 

prototypes of the system. Examples include simulation testing, 

monitoring, and profiling [18]. 

Methods of verifying software can be classified as inspection, 

testing, analysis, and demonstration. Inspection is defined as the 

examination of a software without any destruction using one of 

the five senses (Visual, auditory, olfactory, tactile and taste). It 

may include some physical manipulation and measurements. The 

common techniques involved in the inspection are desk checking, 

walkthroughs, software reviews, technical reviews, and formal 

inspections (e.g., Fagan approach) [20]. Testing is defined as 

verification of a software using the predefined sequence of inputs, 

data or stimuli to make sure the requirements for the execution of 

specific and predefined output. It can be performed by various 

techniques such as statement coverage, condition coverage, and 

decision coverage. 

Analysis of a software system involves prediction of product 

failure using non-destructive tests to hypothesize the breaking 

point. Demonstration of a software is also known as input/output 

driven testing, in which the derived outputs are compared against 

the expected output values. The most accepted technique of 

demonstration is error guessing, boundary-value analysis, and 

equivalence partitioning [20]. 

2. Literature review of different verification 

tools for concurrent programs 

This segment presents a detailed literature survey on the Static and 

Dynamic software verification. It gives the comparative 

description of various methodologies and tools that are utilized in 

software verification. 

The contracts for accessing the public modules can be verified and 

validated by two methods, namely static and dynamic while giving 

real-time errors. These methods of verification not only identify 

the violations in atomicity but its order in a contract. From the 

dynamic approach, it is easy to support contracts along with the 

agreements and spoilers (a set of sequences of methods that may 

violate a target) [7] [8] constructed a tool CONC2SEQ for code 

transformation, which is a FRAMA-C plugin. This tool transforms 

the concurrent C code and generates a sequential code with 

multithreading simulated by interleavings. From this approach, it 

seems to be automatic code generation with user specifications 

incorporated again without any manual involvements. [9] reduced 

the interleaving instances through program instances generated by 

http://creativecommons.org/licenses/by/3.0/
mailto:gayetri.venkhatraman@gmail.com


International Journal of Engineering & Technology 455 

 
code to code translations. This approach consumes less time and 

memory dimensions of the backend analysis tool (Lazy-Cseq). 

[10] derived two approaches for the large and real case of C-

codebases, they are CBMC and FRAMA-C. The author 

commented about their efficiency stating FRAMA-C is not 

readable, whereas the output generated by CBMC has been richer 

since FRAMA-C contains pointers information and missing 

memory allocations. He also described the SonarQube, which is a 

platform that supports code inspection activities. [11] developed 

lazy sequentialization for the multi-threaded programs partial store 

order (PSO) and total store order (TSO). This prototype tool is 

very much effective and competitive with current tools on 

standard benchmarks that are used before.  

[12] reported about VerCors tool which supports the feature of 

concurrency such as kernel using barriers, heterogenicity, atomic 

operations, and compiler directives. VerCor tool has a 

characteristic feature that it can generalize the concurrent program 

verifications to a language-independent setting where a front end 

can be added easily. [13] developed a tool named ‘Atomchase’ a 

new technique that directs the execution of a dynamic analysis 

tool towards three-access pattern (TAP) instances. Using 27 

benchmarks comprising 5.4 million lines of Java, they compared 

AtomChase to five other tools. AtomChase found 20% more TAP 

instances than all five tools combined. 

[17] presented an approach to help the developers in verifying if 

the work units, which have triggered bugs due to certain violations 

of atomicity. The units are verified if they are sufficiently 

synchronized or not by locks introduced for fixing the bugs. This 

approach effectively verifies the synchronizations by testing only 

a minimal set of suspicious atomicity violations without any prior 

knowledge of the work units. Thus, it becomes more practical and 

efficient than other approaches. 

 
Table I: Comparative Study on Different Verification Models in Concurrent Software 

 
Paper & Author Verification method Description Parameters measured/Benchmarks Merits Limitations 

Verifying Concurrent 

Programs Using 

Contracts  

 

Dias et.al., (2017). 

1. Generate Contracts by 

extracting from source code, 

libraries or software 

modules 

2. Extending Contracts with 

Parameters 

3. Extending Contracts with 

Spoilers 

4. Static and Dynamic 

contract validation 

The input opted is 

Multi-threaded 

C/C++ program 

Number of Clauses of contracts, 

Contract Violations, False Positives, 

Potential AV, Real AV, Number 

lines of code SLOC and the time  of 

completion of analysis 

It not only detects the atomicity 

violations but also the order 

violations in a contract 

1. The contracts (sequence 

of methods) for 

verifications are derived 

by developers. 

2. Cost enough in practical 

applications 

CONC2SEQ: A 

FRAMA-C Plugin for 

Verification of 

Parallel Compositions 

of C Programs  

 

Blanchard et.al., 

(2016). 

The CONC2SEQ plugin 

transforms the original code 

into a sequential code to 

stimulate the concurrent 

behavior of the program 

which can be performed in 

FRAMA-C. 

The input applied 

is concurrent C-

program 

1. 704 obligations are automatically 

proved with Frama-C Aluminium 

using Alt-Ergo 1.01 and Z3 4.4.2.  

2. It takes 260s on a QuadCore Intel 

Core i7-4800QM 

@2.7GHz. 

Automatic integration of user 

specifications into the new code 

without any manual 

interventions 

Some of the constructs 

like value analysis and 

runtime verification 

plugins are not handled by 

the FRAMA-C plugins 

Parallel bug-Finding 

in concurrent 

programs via reduced 

interleaving instances  

 

Nguyen et.al., (2017). 

1. Chain of code to code 

transformation of input 

program into set of simpler 

program variants by 

implementing VERISMART 

tool based on Cseq 

framework 

2. Analysis of each program 

variant by selecting an input 

tiling and identify potential 

software bug. - Lazy-Cseq, 

symbolic analysis tool. 

Concurrent C 

programs that use 

the concurrency 

library POSIX 

threads. 

1. Concurrency Benchmarks namely 

eliminationstack and safestack under 

SC and PSO memory models 

exposed reporting the minimum, the 

maximum, the average and the 

standard. 

2. Deviation over the verification 

Time (in seconds) and Memory (in 

MB) consumption of buggy variants 

and Percentage of Instances with 

bugs. 

Consumes less time and 

memory dimensions 

Not able to find the bug 

for safestack-TSO 

Bounded Model 

Checking and 

Abstract 

Interpretation of 

Large C Codebases  

 

Martignano (2017). 

Execution of bounded model 

checking (via CBMC) and 

abstract 

interpretation (via Frama-C) 

1. Generation of a model of 

the code under analysis 

2. “Symbolic execution” or 

“logic verification” of the 

model itself. 

Large, real case, 

C-codebases are 

used as input. 

Clang Static Analyzer has been 

integrated (via Clang-Tidy) into 

SonarQube C/C++ Community 

Plugin. 

Since the code itself able to see 

the results it substantially 

facilitate certain activities like 

software verification and 

validation, quality assessment, 

and bug findings. 

CBMC cannot be so easily 

integrated in the standard 

build chain as Clang Static 

Analyzer or Facebook 

Infer. 

Lazy 

Sequentialization for 

TSO and PSO via 

Shared Memory 

Abstractions  

 

Tomasco et.al., 

(2016). 

Developed lazy 

sequentialization for the 

multi-threaded programs 

partial store order (PSO) and 

total store order (TSO). 

Input: C programs 

with POSIX 

threads in a 

prototype 

tool called 

LazySMA.1 

Abstract data type that factors out the 

semantics of the memory model, 

allowing us to reuse tools designed 

for the analysis of concurrent 

programs under SC. 

Much effective and competitive 

with current tools on standard 

benchmarks that are used 

before. 

Cannot be extended to 

further WMMs. 

The VerCors Tool 

Set: Verification of 

Parallel and 

Concurrent Software  

 

Blom et.al., (2017). 

Captures the behavior of a 

shared memory concurrent 

program by means of a 

process algebra term with 

data. 

Input: C-program Verifying functional correctness of 

three different concurrency features: 

heterogeneous concurrency, kernels 

using barriers and atomic operations, 

and compiler directives for 

parallelization. 

It can generalizes the 

concurrent program 

verifications to a language 

independent setting where a 

front ends can be added easily 

Less scalability 

Efficient Detection 

and Validation of 

Atomicity 

Violations in 

Concurrent Programs  

 

Eslamimehr et.al., 

(2017). 

The execution of a dynamic 

analysis tool towards three-

access pattern (TAP) 

instances. 

1. Static analysis approach 

2. Dynamic approach 

3. Dynamic predictive 

approach 

5.4 million lines 

of Java code 

AtomChase found 20% more TAP 

instances than all five tools 

combined. 

Efficient and Accurate 

Verification 

1. HAVE to produce TAP 

candidates 

2. This approach relies on 

a constraint solver both in 

the plan synthesis and 

directed execution 

modules. 

3. AtomChase cannot filter 

benign atomicity 

violations. 



456 International Journal of Engineering & Technology 

 
4. This approach has no 

support for native code. 

Formal Verification 

With Frama-C: A 

Case Study in the 

Space Software 

Domain 

 

 e silva et.al., (2015). 

Explores abstract 

interpretation and deductive 

verification by employing 

Frama-C’s value analysis 

and Jessie plug-ins to verify 

embedded aerospace control 

software. 

Source codes Both approaches can be employed in 

a software verification process to 

make software more reliable. 

Analyzed results from Frama-

C's value analysis plug-in 

indicate that the algorithms are 

correctly implemented without 

problems such as division by 

zero, invalid pointer access, 

buffer overflows, and other run-

time errors. 

The manual generation of 

contracts that are written 

as Annotations in Source 

Code, become very 

tedious to generate for 

larger program size. 

The paper focuses on 

Formal verification of C 

Software which is 

platform dependent. 

Contains a large number of 

floating-point 

computations. 

Towards Deductive 

Verification of 

Concurrent Linux 

Kernel Code with 

Jessie  

 

Mandrykin et.al., 

(2015) 

Verification of concurrent 

code working with shared 

data by proving the code’s 

compliance with specified 

synchronization discipline. 

Linux Kernel Both approaches can be employed in 

a software verification process to 

make software more reliable. 

Initial functional specification for the 

exposed interface of the RCU 

synchronization mechanism to show 

how the VCC ownership 

methodology (with a minor 

extension) can be applied for 

verification of Linux kernel modules. 

No task on inherent possible 

source of unsoundness of the 

ownership methodology arising 

from possible unrestricted usage 

of atomic blocks. 

It has not been formally 

verified using model-

checking or some other 

suitable technique. 

Debugging 

Multithreaded 

Programs Using 

Symbolic 

Analysis 

 

Xiaodong Zhang 

(2017). 

Guided Execution 

Symbolic Analysis 

Branch Scanning 

Multithreaded C 

programs 

1. The bug detection capability of 

Proactive Debugger tool is compared 

against two concurrent software 

testing tools – ESBMC and Maple.  

2. Proactive-Debugger detects the 

bugs in all the experiments. 

3. Study conducted on eleven 

benchmarks - account, arithmetic, 

queue, Stack, FFT, lu continous, lu 

non continous, radix, pfscan, and 

swarm. 

The net effect of applying this 

feedback loop is a systematic 

and complete coverage of the 

program behavior under a fixed 

test input. 

Very tedious to generate 

bugs for larger program 

size. 

The work does not address 

Dynamic Analysis that 

must complement. Formal 

verification as part of 

V&V process to ensure 

complete Software 

Reliability. 

Verifying 

Synchronization for 

Atomicity 

Violation Fixing  

 

Shi et al., (2016) 

1. Every program execution 

is modeled as a trace of 

events, which must obey 

some basic constraints such 

as the data/control flow of 

the program and the 

synchronization semantics. 

2. Combining the fortes of 

both bug-driven and change-

aware techniques, which 

enables SWAN to 

effectively verify 

synchronization. 

Java programs. Insufficient synchronization was 

avoided by testing a minimal set of 

cautious violations. 

Insufficient 

Synchronizations is time 

consuming. Pervasive in real 

world programs. Verification 

algorithm can converge much 

faster. 

Insufficient 

synchronizations are 

common and difficult to be 

found in software 

development. 

3. Research findings 

In software verification, the contracts derived by developers for 

the verification of concurrent programs are time-consuming, and 

hence not cost-effective for practical applications [7], and are 

platform dependent [14]. Verification of parallel programs using 

FRAMA-C plugins shows inefficient results in value analysis and 

runtime error detection [8]. Reducing the interleaving instances 

during bug detection is inapplicable in safestack TSO [9]. As in 

clang static analyzer and Facebook infer, it is not possible to 

integrate with standard chain for bounded model checking of C-

codebases through CBMC and abstract interpretation [10]. Lazy 

sequentialization for TSO and PSO is not applicable for the weak 

memory models [11].  There was a loss in scalability during the 

verification of concurrent C-programs by VerCors tool and also it 

was inferred with low detection of bugs by this tool [12]. 

Atomchase a tool proposed by [13], can recognize about 89% of 

the real atomicity violations, but it is unable to find and filter the 

benign atomicity violations. Similarly, SWAN tool shows 

insufficient synchronization when detecting atomicity violations 

in synchronizations [17].  Debugging by symbolic analysis is 

laborious for larger programs [16]. Deductive verification of 

concurrent Linux Kernel code by model checking is not been 

formally verified [15]. 

4. Proposed system for verification of 

concurrent Software 

 
Figure 1: The proposed multilayered verification system 

 
The proposed working line provides a framework to mitigate 

various verification issues in Formal methods such as handling 

large-sized programs, strenuous generation of programming 

contracts by developers, and platform dependency. FRAMA-C is 

unable to handle value analysis plugin because it does not identify 



International Journal of Engineering & Technology 457 

 
the function termination and shows valid results even though the 

input data is incorrect. To overcome these issues, our proposed 

system provides a multilayered verification tool named F-Java for 

concurrent Java programs. The framework consists of 

Programming rules generation stage, Verification stage with 

Particle Swarm Optimization (PSO) algorithm, and Performance 

measurement stage. In this tool, contracts are generated in order to 

ensure the atomicity of the given input. They provide an effective 

mechanism to establish the difference between the components to 

be verified and specifies the Abstract interpretation and Deductive 

verification made by the F-Java tool. The deadlocks and atomicity 

in the contracts are then evaluated by the deadlock detection (DD) 

algorithm. After the deadlock detection, the functional 

dependency between the set of attributes in methods and classes 

(e.g., Student_Id->Student_Name.) in the logical sequences are 

analyzed. The rules to be verified are automatically generated in 

the form of a decision tree. Now the contracts and the data to be 

verified are optimized by the particle swarm optimization (PSO). 

This optimization aims at the efficient prioritization of the 

contracts and test cases in a Time constrained verification 

environment. 

An Abstract interpretation technique is used to identify non-

functional errors such as timing, memory usage and hence ensure 

the absence of runtime errors. Deductive verification is used 

instead of the common formal verification method. Because, 

formal method of verification shows specification errors, 

incomplete functional coverage of specification, and bugs can 

miss design errors, which are the limitations that destructs the 

concurrent software.  Deductive verification deducts bugs such as 

buffer overflows, run time-errors, undefined functions and 

obfuscate codes with infinite state. The verification tool thus aims 

at maximum number of bugs being detected with time efficiency 

and increasing performance. 

5. Conclusion 

Various research papers on verification of concurrent programs 

were studied and with a comparison of their models and 

drawbacks briefly discussed. Based on the research findings, the 

verification of concurrent Java programs by using F-Java tool is 

proposed. This system encompasses, Abstract interpretation, 

Deductive verification and Optimization algorithms, to verify the 

multi-threaded Java programs efficiently with a reasonably lesser 

execution time. The future working line, thus paves the way for 

the new possible research directions in software verification. 

References 

[1] Philippaerts P, Mühlberg JT, Penninckx W, Smans J, Jacobs B 

& Piessens F, “Software verification with VeriFast: Industrial 

case studies”, Science of Computer Programming, Vol. 82, 

(2014), pp.77-97. 

[2] Schmidt RF, “Software engineering architecture-driven software 

development”, Amsterdam: Elsevier, (2013) 

[3] Monteiro P, Machado RJ & Kazman R, “Inception of software 

validation and verification practices within CMMI Level 2”, 

Software Engineering Advances, (2009), pp.536-541. 

[4] Filliâtre JC, “Deductive software verification”, International 

Journal on Software Tools for Technology Transfer (STTT), 

Vol.13, (2011),  pp.397-403. 

[5] Knutson C & Carmichael S, “Verification and Validation”, 

Embedded Systems Programming, Vol. 25, (2001). 

[6] Gabmeyer S, Kaufmann P, Seidl M, Gogolla M & Kappel G, “A 

feature-based classification of formal verification techniques for 

software models”, Software & Systems Modeling, (2017), pp.1-

26. 

[7] Dias RJ, Ferreira C, Fiedor J, Lourenço JM, Smrcka A, Sousa 

DG & Vojnar T, “Verifying Concurrent Programs Using 

Contracts”, Software Testing, Verification and Validation 

(ICST), (2017), pp.196-206. 

[8] Blanchard A, Kosmatov N, Lemerre M & Loulergue F, 

“Conc2Seq: A Frama-C Plugin for Verification of Parallel 

Compositions of C Programs”, Source Code Analysis and 

Manipulation (SCAM), (2016), 767-772. 

[9] Nguyen TL, Schrammel P, Fischer B, La Torre S & Parlato G, 

‘Parallel bug-finding in concurrent programs via reduced 

interleaving instances”, Proceedings of the 32nd IEEE/ACM 

International Conference on Automated Software Engineering, 

(2017), pp.753-764. 

[10] Martignano M, “Bounded model checking and abstract 

interpretation of large C codebases”, Metrology for AeroSpace 

(MetroAeroSpace), (2017), pp.16-20. 

[11] Tomasco E, Nguyen TL, Inverso O, Fischer B, La Torre S & 

Parlato G, “Lazy sequentialization for TSO and PSO via shared 

memory abstractions”, Proceedings of the 16th Conference on 

Formal Methods in Computer-Aided Design. FMCAD Inc, 

(2016), pp.193-200. 

[12] Blom S, Darabi S, Huisman M & Oortwijn W, “The VerCors 

tool set: verification of parallel and concurrent software”, 

International Conference on Integrated Formal Methods, 

(2017), pp.102-110. 

[13] Eslamimehr M, Lesani M & Edwards G, “Efficient Detection 

and Validation of Atomicity Violations in Concurrent 

Programs”, Journal of Systems and Software, (2017).  

[14] e Silva RAB, Arai NN, Burgareli LA, de Oliveira JMP & Pinto 

JS, “Formal verification with frama-C: A case study in the space 

software domain”, IEEE Transactions on Reliability, Vol.65, 

No.3, (2016), pp.1163-1179. 

[15] Mandrykin M & Khoroshilov A, “Towards deductive 

verification of concurrent Linux kernel code with Jessie”, 

Computer Science and Information Technologies (CSIT), 

(2015), pp.5-10.  

[16] Zhang X, “Debugging Multithreaded Programs Using Symbolic 

Analysis”, Software Testing, Verification and Validation (ICST). 

(2017), pp.557-558.  

[17] Shi Q, Huang J, Chen Z & Xu B, “Verifying Synchronization for 

Atomicity Violation Fixing”, IEEE Transactions on Software 

Engineering, Vol.42, No.3, (2016), pp.280-296. 

[18] Uspenskiy S, “A survey and classification of software testing 

tools”, Master of Science Thesis, Lappeenranta University of 

Technology, (2010). 

[19] Boogerd C & Moonen L, “Prioritizing software inspection 

results using static profiling”, Source Code Analysis and 

Manipulation, (2006), pp.149-160. 

[20] Etenting Hub-Online Free Software Testing Tutorial. (n.d.), 

Software Testing Verification, 2018.  

 

View publication stats

https://www.researchgate.net/publication/325117588

