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Bioprospection of actinobacteria derived 
from freshwater sediments for their potential 
to produce antimicrobial compounds
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Abstract 

Background:  Actinobacteria from freshwater habitats have been explored less than from other habitats in the search 
for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater 
sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive 
compounds.

Results:  16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a com-
mon genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amyco-
latopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were 
found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide 
synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), 
were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were 
selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography 
(UPLC–ESI–MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). 
Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and deter-
mined from the methanolic crude extract of six selected Streptomyces strains.

Conclusion:  Infectious diseases still remain one of the leading causes of death globally and bacterial infections 
caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has 
the prospects for the production of bioactive secondary metabolites.
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Background
Actinobacteria are diverse group of Gram positive and fil-
amentous bacteria that have high guanine–cytosine (GC) 
content ranging from 50 to 70 mol% in their genome [1]. 
They are considered excellent elaborators of pharmaceu-
tical products such as antibiotics and industrial enzymes 
and are well known as a prominent source for finding 
novel biologically active secondary metabolites [2, 3].

Antibiotic resistance against available drugs is one of 
the primary reasons to seek new and novel drugs such 
as antibiotics from a natural source to fight against mul-
tidrug-resistant pathogens [4]. The infections caused by 
globally emerging Gram-negative  multidrug-resistant 
pathogens  are an important challenge. Vancomycin-
resistant enterococci (VRE), Methicillin-resistant Staph-
ylococcus aureus (MRSA), extended-spectrum 
β-lactamase (ESBLs) that produce Gram-negative bac-
teria, and Klebsiella pneumoniae carbapenemase (KPC) 
that produces Gram-negative bacteria are few of the 
most significant cases that are gradually increasing in 
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ubiquity and virulence [5]. Due to this fact, there is an 
incessant requirement for the search for new bioac-
tive compounds from unexplored/less explored envi-
ronments [6]. As a result, it is important to target such 
environments that could be highly potent sources of 
novel and bioactive compounds. Among all living organ-
isms, the actinobacteria phylum currently represents 
the most prospective group of microorganisms for the 
discovery of bioactive compounds such as antimicrobi-
als, antitumor agents, antiparasitics, anticancer agents 
and enzymes [7, 8]. It has been shown that 45% of all 
reported bioactive compounds of microbial origin are 
produced by actinobacteria, more than 70% of which are 
produced by the largest genus in the phylum Streptomy-
ces [9].

Since the discovery of the first antibiotic from act-
inobacteria in 1940, actinomycin, the exploration of 
these micro-organisms has resulted in the isolation 
of thousands of naturally occurring antibiotics to date 
[10]. Several novel species of Streptomyces have been 
reported worldwide as potential natural sources for the 
discovery of naturally occurring antibiotics [11–13]. 
Actinobacteria have been extensively reported from dif-
ferent ecosystems such as soil, freshwater, marine and 
as endophytes from plants [14, 15] and have been inves-
tigated for their potential contributions to the phar-
maceutical industry by different researchers [16–22]. 
However, there has been a significant decline in the rate 
of discovery of novel actinobacteria in recent years [23, 
24]. Therefore, the exploration of potential actinobacte-
ria from unexplored habitats is an important approach 
to discovering novel antibiotics to meet the current 
needs [25, 26].

Northeast India is a large bioprospecting area that was 
identified as the Indo-Burma mega-biodiversity hot-
spot by Conservation International, and the area is well 
known for its rich biodiversity and unexplored biological 
resources [27, 28]. Bioprospection studies on the actino-
bacteria phylum have mainly focused on terrestrial and 
marine ecosystems, and few have focused on freshwa-
ter ecosystems [29]. There are several reports that have 
examined the diversity of actinobacteria in freshwater 
worldwide [29–31], but very few studies have reported 
on their biosynthetic potential. Therefore, it will be of 
great importance to characterize the various biologically 
active secondary metabolites produced by actinobacteria 
obtained from freshwater sediments. The present study 
intended to isolate actinobacterial cultures, screen them 
for in vitro antimicrobial inhibitory activity, detect their 
bioactive secondary metabolites and phylogenetically 
identify the potential antibiotic-producing actinobacteria 
from freshwater sediments of selected freshwater lakes 
and rivers in India.

Methods
Sediment sampling
Samples were collected from two rivers [Tlawng River 
(24°52′N; 92°36′E), Tuirial River (24°21′N  92°53′)] and 
one lake [Tamdil Lake (23°44′N; 92°57′E)] (Additional 
file  1: Fig. S8). Samples were randomly collected from 
five different stations of each river and lake at average 
depths of 2–5 m. The labeled samples were placed in ster-
ile tubes (50 ml), transported to the laboratory and were 
processed immediately for the isolation of actinobacteria.

Isolation of freshwater actinobacterial strains
The collected samples were subjected to physical pre-
treatment (55 °C for 6 min) to hinder the growth of fast-
growing bacteria and favor the growth of actinobacteria 
[7]. Actinobacteria were isolated using the serial dilution 
method and the spread plate technique. The stock solu-
tion of the sample was prepared with 1 ml of water sedi-
ment (water + sediment suspension) and 9  ml of sterile 
distilled water in a test tube, and the solution was mixed 
for 10 min. The suspension was serially diluted by trans-
ferring 1 ml aliquots to a series of test tubes; each con-
taining 9 ml of sterile distilled water to prepare the final 
volumes of 10−1, 10−2 and 10−3, and the diluted suspen-
sion was spread over the surface of selected nutritional 
media. Seven selective media, starch casein agar (SCA), 
yeast extract-malt extract agar (ISP2), Actinomycetes 
isolation agar (AIA), Streptomyces agar (SA), glycerol–
asparagine agar (ISP5), tyrosine agar medium (ISP7), and 
tap water yeast extract agar (TWYE), were supplemented 
with nalidixic acid (30  mg/ml) and cyclohexamide 
(30 mg/ml) to inhibit the growth of Gram-negative bac-
teria and fungi, respectively. The plates were incubated at 
28 ± 1 °C for 7–30 days, and the colonies were observed 
periodically. Pure cultures were obtained after two to 
three successive sub-culturing rounds and transferred 
to fresh isolation media. The cultures were preserved in 
their respective slants at 4 °C and 30% glycerol at − 80 °C.

Morphological and microscopic characterization 
of actinobacterial strains
Pure cultures of the isolates were identified based on 
their morphological and cultural characteristics follow-
ing the International Streptomyces Project (ISP) [32]; 
the nature of the colony, the color of aerial and substrate 
mycelium, the production of diffusible pigments and the 
utilization of carbon source were studied [33]. The spore 
chain morphologies of the isolates were studied using 
a scanning electron microscope (SEM). The mycelium 
structures were observed using a phase contrast micro-
scope (Olympus), and the organisms were identified 
according to Bergey’s Manual of Determinative Bacteriol-
ogy 9th edition.
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Molecular identification and phylogenetic analysis
Genomic DNA was isolated and purified using a DNA 
extraction kit (Invitrogen) as described in previous stud-
ies [21]. Ribosomal RNA (16S rRNA) genes were ampli-
fied using universal bacterial primers [34]. The reactions 
and conditions of the PCR were performed exactly as 
reported in our previous studies [21], and sequencing 
was done commercially at Sci Genome Pvt. Ltd. Cochin, 
India. Sequences were compared with the reference 
strains of actinobacteria from the NCBI genomic data-
base using a BLASTn search to determine similarity per-
centages. The strains with highest similarity percentages 
were retrieved from the EzTaxon database [35], and mul-
tiple sequence alignment was performed using Clustal W 
software packaged in MEGA 6.0 [36]. The evolutionary 
models were selected based on the lowest Bayesian infor-
mation criterion (BIC) scores and the highest Akaike 
information criterion (AIC) values using MEGA 6.0 
[37]. Phylogenetic analysis was performed using MEGA 
6 software using the maximum-likelihood method and 
using the Tamura Nei parameters algorithm taking E. coli 
as the outgroup [38]. The significance of the branching 
order was determined by bootstrap analysis of 1000 alter-
native trees. The obtained nucleotide sequences of the 
16S rRNA gene fragments were deposited, and accession 
numbers were acquired. Trees were viewed and edited 
using the FigTree 1.3.1 program.

Screening for antimicrobial activity
The antimicrobial activities of the actinobacterial iso-
lates were tested against five bacterial pathogens [Gram-
positive bacteria: Staphylococcus aureus MTCC-96, 
Bacillus subtilis NCIM-2097, and Micrococcus luteus 
NCIM-2170; Gram-negative bacteria: Pseudomonas aer-
uginosa MTCC-2453 and Escherichia coli MTCC-739 
and yeast: Candida albicans MTCC-3017]. The patho-
gens were obtained from the Microbial Type Culture 
Collection (MTCC), Chandigarh and National Collec-
tion of Industrial Microorganisms (NCIM), Pune, India. 
The crude extracts were prepared by inoculating a sin-
gle purified colony of actinobacteria in Tryptone yeast 
extract broth medium (ISP medium 1) and incubated at 
28  °C, 150 rpm for 7–20 days. The grown cultures after 
centrifugation were used to assess antimicrobial activity 
by the agar well diffusion method [39]. The test patho-
genic bacteria were spread on a nutrient agar plate, 6 mm 
diameter wells were prepared using a sterile cork borer, 
70  µl of the clear supernatant of the actinobacteria was 
dispensed into individual wells, and the plates were incu-
bated at 28 ± 2 °C for 24 h. The anti-microbial activity of 
the isolates was evaluated as described by Zothanpuia 
et al. [21].

Antimicrobial assay using crude extract
The actinobacteria isolates that were selected based on 
antimicrobial screening were grown in ISP1 broth using 
a 500 ml conical flask at 28 °C in a shaker incubator for 
30 days. The filtrates of the grown cultures were used for 
the extraction using methanol 1:1 ratio (v/v). The meth-
anolic crude extracts of the isolates were prepared in 
concentrations of 1, 2, 5, 20 mg and 40 mg/ml [21] with 
sterile water and used for antimicrobial activity by the 
agar well diffusion method and disk diffusion assay [39, 
40].

Determination of MIC
The minimum inhibitory concentration (MIC) of the 
selected strains was determined using the broth micro 
dilution technique in a 96-well microtiter plate [41]. The 
methanolic extracts of the strains were dissolved and 
diluted in different concentrations (0.025, 0.05, 0.1, 0.2, 
0.4, 0.8, 1.6 and 3.2 mg/ml) and were used to test the anti-
microbial activity by growing them with bacterial culture 
in a 96-well microtiter plate. The ampicillin (1  mg/ml) 
amended bacterial culture was used as the positive con-
trol, and the bacterial cultures without treatment were 
used as the negative control. The plates were incubated at 
37 °C for 36 h, and absorbance was taken at 700 nm in a 
UV–VIS spectrophotometer (MultiscanTM GO, Thermo 
Scientific, MA, USA). EC50 was expressed and calculated 
as previously described [21].

Amplifications of biosynthetic genes (PKS, phzE and NRPS)
The presence of biosynthetic genes [Polyketide syn-
thase type II (PKS II) non-ribosomal peptide synthetase 
(NRPS) and aminodeoxyisochorismate synthase (phzE)] 
was evaluated using degenerate primers for highly con-
served regions encoding enzymes associated with the 
biosynthesis of polyketides, peptides and phenazine, 
respectively. The primers that were employed and the 
PCR conditions for the amplification of PKS-II, phzE and 
NRPS gene fragments were described in previous studies 
[7, 21].

Phylogenetic analysis PKS II, NRPS and phzE gene
Biosynthetic gene sequences of PKS type II, NRPS and 
phzE from the selected seven strains were compared with 
the sequences from NCBI database using the BLASTn 
search tool [38] and were aligned by Clustal W software 
packaged in MEGA 6.0 [36]. The evolutionary model for 
PKS II, NRPS and phzE gene was selected based on low-
est BIC value and highest AIC value using MEGA 6.0 
[39]. Phylogenetic tree was constructed by the maximum 
likelihood method using MEGA 6.0 software with Gen-
eral Time Reversible (GTR + G) model for PKS II and 
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Tamura 3-parameter (T92 + G) for NRPS and phzE gene 
[38, 39].

Detection of antibiotics using UPLC–ESI–MS/MS
Ultra-performance liquid chromatography (UPLC–
ESI–MS/MS) was employed to detect antibiotics in the 
methanolic extracts of the selected strains. Four anti-
biotics (trimethoprim, fluconazole, ketoconazole and 
rifampicin) were selected, and a standard solution was 
prepared using methanol (Additional file  1: Table  S4). 
The mixed standards were diluted in the ranges from 0.5 
to 500 ng/ml, and a standard calibration curve was pre-
pared. Instrumentation and analytical conditions were 
performed using the standardized methods as described 
in our previous paper (Fig. 4) [21].

GC–MS analysis
Gas chromatography–mass spectroscopy (GC–MS) 
was used to determine the volatile organic compounds 
(VOCs) present in the methanolic extracts of the selected 
strains. For GC–MS, the Clarus 680 GC was used in the 
analysis employed with a fused silica column packed 
with Elite-5MS (5% biphenyl 95% dimethylpolysiloxane, 
30  m × 0.25  mm ID × 250  μm df), and the components 
were separated using helium as carrier gas at a constant 
flow of 1  ml/min. The injector temperature was set to 
260  °C during the chromatographic run.  A total of 1  μl 
of the extracted sample was injected into the instrument, 
and the oven temperatures were as follows: 60 °C (2 min); 
followed by 300  °C at a rate of 10  °C/min; and 300  °C 
for 6 min. The mass detector conditions were a transfer 
line temperature of 240  °C; an ion source temperature 
of 240  °C, an ionization mode electron impact at 70 eV, 
a scan time of 0.2 s and a scan interval of 0.1 s. The frag-
ments from 40 to 600 Da were analyzed. The spectra of 
the detected compounds were compared with their mass 
spectra from the database of known components stored 
in the GC–MS NIST (2008) library.

Statistical analysis
All experiments were conducted in triplicate, and the 
readings were taken as the mean ± the standard devia-
tion of the mean of three replicates, which were calcu-
lated using Microsoft Excel XP 2010. One-way analysis 
of variance (ANOVA) was performed to analyzed signifi-
cant difference (P = 0.05) between antimicrobial activities 
obtained isolates by using SPSS software version 20.0.

Results
Isolation and distribution of freshwater actinobacteria
A total of 68 isolates of actinobacteria were obtained 
from freshwater sediments; 30 strains from Tamdil Lake, 
19 from Tlawng River, 19 from Tuirial River. From a total 

of seven different media employed for isolation, 31 iso-
lates were recovered from the SCA medium, 24 from 
AIA, 3 from ISP5, 4 from SA, 1 from TWYE, 3 from ISP7, 
and 2 from ISP2. These results clearly indicated that SCA 
was the most suitable medium for the isolation of act-
inobacteria from freshwater sediments and yielded 45% 
of the total isolates followed by AIA (36%). After 30 days 
of incubation, the cultures matured and the actinobacte-
ria colony was observed to exhibit white, black, yellow, 
orange, brownish white and pale yellow colors. Most 
of the actinobacterial strains analyzed by field emission 
gun-scanning electron microscopy (FEG-SEM) showed 
that the aerial mycelia produce spiral spore chains (Addi-
tional file 1: Fig. S1).

Molecular characterization and phylogenetic affiliation
According to the molecular identification using 16S 
rRNA gene sequencing, 68 actinobacteria isolates were 
classified into six families and nine genera with similar-
ity percentages ranging from 98 to 100%. The majority of 
the isolates were grouped under Streptomycetaceae fol-
lowed by Pseudonocardiaceae, Nocardiopsaceae, Nocar-
diaceae, Promicromonosporaceae and Micrococcaceae. 
Streptomyces was the most dominant genus (n = 49, 72%), 
and the other genera included Nocardiopsis (n = 6), Sac-
charopolyspora (n = 4), Rhodococcus (n = 2), Prauserella 
(n = 1), Amycolatopsis (n = 1), Promicromonospora 
(n = 1) Kocuria (n = 1) and Micrococcus (n = 3) (Addi-
tional file 1: Table S1). All sequences were deposited in the 
NCBI GenBank database, and accession numbers were 
given (KM243384, KM405296–KM405298, KM405300–
KM405304, KM405306–KM405307, KM405310, 
KM406395, KM406397, KM406398, KR703473– 
KR703475, KR857285, KR857286, KR857288, KR857290– 
KR857296, KR857298–KR857318, KT232313–KT232316,  
KT429605–KT429610, KT429612, KT429614–KT429616,  
KY077681, MF536299–MF536302). The length of the 
sequences was used for the construction of phylogenetic 
tree ranges from 500 to 1000 bp. The phylogenetic tree was 
constructed using the maximum-likelihood and Tamura 
Nei parameters with the lowest BIC values (12,154.636) 
and highest AIC values (10,215.261) (Fig. 1). The topology 
of the tree that was generated differentiated the isolates 
into 3 major clades. All genera of Streptomyces formed 
major clade I with a bootstrap support value of 96%. Rare 
genera, such as Saccharopolyspora, Amycolatopsis and 
Prauserella, which fell under the family Pseudonocardi-
aceae, were clustered together with Rhodococcus and had 
a bootstrap value of 87%. Micrococcus and Kocuria under 
the family Micrococcaceae formed a separate clade II with 
Promicromonospora and had a bootstrap value of 83%. All 
strain types of Nocardiopsis formed a separate clade III 
with a bootstrap value of 100%.
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Relative abundance
The relative abundance of actinobacteria at the genus 
level revealed that Streptomyces was the most dominant 
in Tamdil Lake (n = 20, 40.8%) followed by Tlawng River 
(n = 18, 36.7%) and Tuirial River (n = 11, 22.4%) from a 
total of 49 isolates. However, some rare actinobacteria, 
such as Promicromonospora sp., Prauserella sp., Rho-
dococcus sp., and Kocuria sp., were obtained from only 
Tamdil Lake, while Amycolatopsis sp. was found in only 
Tlawng River. Saccharopolyspora sp., Nocardiopsis sp. 
and Micrococcus sp. were obtained from Tamdil Lake 
and Tlawng River, whereas several different species of 

Streptomyces were obtained from all study sites (Fig. 2). 
These results showed that the freshwater actinobacteria 
population varies substantially between lakes and rivers. 
In comparison to the river ecosystem, the lake ecosystem 
was observed to be more favorable for actinobacterial 
growth, as indicated by the enhanced number of isolates 
obtained with greater diversity.

Evaluation of antimicrobial activity
Initially, all isolates (n = 68) were subjected to prelimi-
nary screening against five bacterial pathogens (S. aureus, 

Fig. 1  Maximum likelihood phylogenetic tree constructed using Tamura-Nei model based on 16S rRNA gene sequences of actinobacteria showing 
the phylogenetic relationship between the isolates with closest type strain sequences. Numbers at branches indicate bootstrap values in 1000 
replicates
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B. subtilis, M. luteus, P. aeruginosa, E.  coli) and yeast 
(C. albicans). All isolates exhibited antagonistic activ-
ity against at least three of the six tested pathogens. E. 
coli was found to be the most susceptible pathogen and 
all isolates (100%) showed activity against it within the 
inhibition range of 7.4 mm to 15.5 mm diameter (Addi-
tional file  1: Table  S2). This was followed by P. aerugi-
nosa (95.65%), C. albicans (79.71%), B. subtilis (78.26%) 
and S. aureus (63.76%). Only 26 (37%) isolates showed 
positive activity against M. luteus. The maximum activity 
was recorded by Streptomyces flavogriseus strain DST30 
(18.8  mm) followed by Streptomyces cyaneofuscatus 
strain DST57 (15.95 mm) and Streptomyces albidoflavus 
DST71 (15.9  mm) against M. luteus, C. albicans and B. 
subtilis, respectively. Six strains (Streptomyces sp. DST25, 
Streptomyces cellulosae DST28, Streptomyces flavogriseus 
DST52, Streptomyces albidoflavus DST71, Streptomy-
ces sp. DST116 and Streptomyces sp. DST119) showed 

broad-spectrum antimicrobial activities (Table 1), inhib-
iting all six tested pathogens, and these strains were 
selected as potential candidates for further investigation. 
Mean (± SD) followed by the same letter(s) in each col-
umn are not significantly different at P < 0.05 using Dun-
can’s new multiple range test.

Antimicrobial activity using methanol crude extract
The methanolic crude extracts of the six selected strains 
that were tested for their antimicrobial activity showed 
adequate inhibition zones at 20 and 40  mg/ml (Addi-
tional file 1: Fig. S1) for all six samples, while all the iso-
lates showed no activity in 1 and 2 mg/ml. The agar well 
diffusion assay showed better results compared to the fil-
ter paper disk diffusion assay.

MIC of selected strains
The methanolic crude extracts of the six strains were 
subjected to antimicrobial activity quantification by 
determining the MIC of each strain against six patho-
gens. Streptomyces sp. DST116 showed maximum activ-
ity against M. luteus (EC50 = 0.05103  mg/ml) among 
all tested pathogens. Streptomyces cellulosae DST28 
(EC50 = 0.3371  mg/ml) and Streptomyces flavogriseus 
DST52 (EC50 = 0.003  mg/ml) also showed the highest 
antimicrobial activities against M. luteus. Streptomyces 
sp. DST25 showed the highest activity against B. subti-
lis (EC50 = 0.009 mg/ml), and Streptomyces albidoflavus 
DST71 showed the highest activity against P. aeruginosa 
(EC50 = 0.05042 mg/ml) (Table 2).

Biosynthetic gene analysis
Out of the 68 isolates screened for a biosynthetic gene, 
NRPS was detected in 71% (n = 49) of the isolates, PKS 
type II was detected in 26 isolates (38%), and phzE was 
detected in 28% (n = 19) of the isolates (Additional file 1: 
Table S2). A total of 11 isolates (DST45, DST47, DST54, 
DST56, DST57, DST58, DST74, DST76, DST77, DST99, 
DST101) were found to have all three genes.

Fig. 2  Abundance of actinobacterial isolates in three fresh water 
systems

Table 1  Antimicrobial activity of selected strains of actinobacteria

Mean (± SD) followed by the same letter(s) in each column are not significant different at P < 0.05 using Duncan’s new multiple range test

Strain Antibacterial properties Yeast Biosynthetic genes

E. coli P. aeruginosa S. aureus M. luteus B subtilis C. albicans PKS-II NRPS phzE

Streptomyces sp. DST25 9.40 ± 0.03a 12.0 ± 0.06a 9.00 ± 0.06a 13.2 ± 0.10a 12.5 ± 0.2a 12.5 ± 0.20a + + −
Streptomyces cellulosae DST28 9.50 ± 0.01a 10.0 ± 0.10bc 10.0 ± 0.10bc 12.7 ± 0.10a 12.5 ± 0.1a 11.5 ± 0.50bc − − −
Streptomyces flavogriseus DST52 15.0 ± 0.01bc 11.5 ± 0.15a 8.00 ± 0.05bde 10.8 ± 0.10bc 8.4 ± 0.00bc 15.5 ± 0.05bde + + −
Streptomyces albidoflavus DST71 13.0 ± 0.30bde 10.0 ± 0.04bc 6.60 ± 0.40bdf 6.20 ± 0.20bde 15.9 ± 0.2bde 13.8 ± 0.10bdfg − + +
Streptomyces sp. DST116 9.00 ± 0.30a 8.50 ± 0.05bde 9.20 ± 0.25a 18.8 ± 0.10bdfg 14.4 ± 0.2bdfg 12.9 ± 0.05a + + −
Streptomyces sp. DST119 8.10 ± 0.10bdf 7.00 ± 0.10bdf 8.00 ± 0.10bde 14.3 ± 0.10bdfh 14.2 ± 0.1bdfg 13.1 ± 0.10bdfh + + +
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Phylogenetic analysis of biosynthetic genes
The nucleotide sequences of three biosynthetic genes 
(PKS II, NRPS and phzE) showed 82–92% similar-
ity with the type strain from NCBI-BLASTn database. 
The transition and transversion bias ratio of PKSII, 
NRPS and phzE gene was 0.55, 0.33 and 0.17 respec-
tively whereas the maximum log likelihood for the 
substitution computation was − 2765.453, − 501.484 
and − 801.607 respectively. The phylogenetic tree 
constructed using PKS II sequences revealed that 
Streptomyces sp. DST29 formed separate clade with 
Streptomyces sp. MM48 Streptomyces gobitricini with 
bootstrap values of 99% while Streptomyces sp. DST116, 

Streptomyces sp. DST52 and Streptomyces sp. DST119 
each formed a separate clade with a bootstrap support 
value of 99–100% (Fig.  3a). Similarly the NRPS gene 
sequences of Streptomyces sp. DST116 Streptomyces sp. 
DST25, Streptomyces sp. DST71 and Streptomyces sp. 
DST119 formed separate clade with Streptomyces sp. 
CAH29-18, Streptomyces albidus NBRC14052, Strepto-
myces cyaneofuscatus DST103, Streptomyces bamensis 
NBRC14727 and Streptomyces sp. BSH50-42 respec-
tively with a bootstrap value of 84–89% (Fig.  3b). 
Similarly Streptomyces sp. DST119 and Streptomy-
ces sp. DST71 were clustered separately in phzE gene 
sequences forming same clade with Streptomyces sp. 

Table 2  EC50 of six Streptomyces strains against six pathogens

Strain EC50 mg/ml

E. coli P. aeuginosa S. aureus B. subtilis M. luteus C. albicans

Streptomyces sp.
DST116

0.235 0.231 0.110 0.227 0.051 0.069

Streptomyces cellulosae
DST28

1.673 2.353 1.085 0.804 0.331 0.900

Streptomyces sp.
DST25

0.086 0.144 0.070 0.009 0.286 0.070

Streptomyces sp.
DST119

0.260 0.015 0.015 0.278 0.950 1.195

Streptomyces flavogriseus
DST52

0.056 0.267 0.040 0.170 0.003 1.600

Streptomyces albidoflavus
DST71

0.102 0.050 0.138 0.650 0.190 0.075

Fig. 3  Maximum likelihood (ML) phylogenetic tree constructed using amino acid sequences for a PKS type II gene; b NRPS gene and c phzE gene. 
The scale bar represents the amino acid changes
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HB291 and Streptomyces sp. 13–33–9 respectively with 
a bootstrap value of 100% (Fig. 3c).

GC–MS analysis
The methanolic crude extracts of the six selected strains 
were investigated to determine their volatile organic 
compounds using GC–MS, which revealed thirty-five 
VOCs (Additional file 1: Table S3). Fourteen compounds 
were detected from the extract of Streptomyces albido-
flavus DST71 within the retention time of 15–29  min 
(Additional file  1: Fig. S2). Among the compounds, 
hexanal constituted the maximum amount, which 
accounted for 23.2% of the total volume. Six VOCs, 
valine, glutaraldehyde, d-leucine, 3,3-dimethyl-4-meth-
ylamino-butan-2-one, pentadecylamine, cyclopropane 
and 1-butyl-2-(2-methylpropyl)-, were detected from 
the extract of Streptomyces sp. DST25, and glutaralde-
hyde was the most abundant followed by an amino acid, 
valine (Additional file  1: Fig. S3). Only one compound 
(di-n-octyl phthalate) was detected in extracts of Strepto-
myces cellulosae DST28 (Additional file 1: Fig. S4). Seven 
compounds were determined from the extract of Strep-
tomyces flavogriseus DST52, of which carbonic acid, 2, 
2, 2-trichloroethyl undec-10-enyl ester alone constituted 
49.78% (Additional file  1: Fig. S5). Only 2-methoxy-4,5-
diphenyl-6-(2′-phenylethyl)pyrimidine was detected 
in the extract of Streptomyces sp. DST116 (Additional 
file  1: Fig. S6), while six compounds were detected in 
the extract of Streptomyces sp. DST119 in which 2-ben-
zylthio-8-methyl-7-phenylpyrano [2,3-f ]benzoxazol-
6(h)-one constituted the maximum amount (42.66%) 
(Additional file 1: Fig. S7).

Detection and quantification of antibiotics using 
the UPLC‑MRM method
The UPLC–ESI–MS/MS analysis for detection of certain 
standard antibiotics of the methanolic crude extracts of 

the selected isolates showed that rifamycin was present 
in the highest amount in all samples followed by keto-
conazole, trimethoprim and fluconazole. Trimethoprim 
was found to be present in higher amounts (39 μg/g) in 
extracts of Streptomyces flavogriseus DST52 compared 
to the other samples. Extracts of Streptomyces cellulosae 
DST28 contained more fluconazole (17 μg/g), ketocona-
zole (50  μg/g) and rifamycin in (74  μg/g) compared to 
other samples (Table 3 and Figs. 4, 5). MS/MS Spectra of 
standard  reference analytes i.e.  trimethoprim, flucona-
zole, ketoconazole and rifampicin showed as Fig.  5  was 
used from our earlier publication [21].   

Discussion
The bio-resources in freshwater ecosystems are largely 
unexplored, especially in the field of microbiology. Fresh-
water ecosystems are becoming a promising area for the 
isolation of bioactive compounds of pharmaceutical and 
biotechnological importance [21]. In the present investi-
gation, 68 actinobacterial strains were isolated from three 
freshwater systems, and maximum strains were obtained 
from the lake sediment compared to the sediments from 
the two rivers. This could be because sediments contain-
ing actinobacteria in rivers are continuously removed 
by running water and get deposited in different areas 
throughout the river. At the same time, lake sediments 
are concentrated in particular areas that are not drasti-
cally affected by running water. Different nutritional 
media were employed to achieve maximum diversities 
of actinobacteria, since nutrient uptake differed between 
organisms. The results indicated that SCA was the best 
medium for the isolation of the maximum number of act-
inobacteria strains, which was in accordance with earlier 
studies [42–45].

Streptomyces represents the largest genus under the 
bacteria domain [46] and the actinobacteria phylum [21]. 
The present investigation also showed that Streptomyces 

Table 3  Antibiotics content of six selected strains (μg/g)

Strain no. Trimethoprim Fluconazole Ketoconazole Rifamycin

Streptomyces sp.
DST25

17.0 8.0 29.0 51.0

Streptomyces cellulosae
DST28

21.0 17.0 50.0 74.0

Streptomyces flavogriseus
DST52

39.0 5.0 28.0 78.0

Streptomyces albidoflavus
DST71

27.0 16.0 35.0 68.0

Streptomyces sp.
DST116

26.0 10.0 49.0 86.0

Streptomyces sp.
DST119

28.0 6.0 32.0 64.0
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was the most dominant genus in freshwater sediments, 
which is in accordance with the findings of Wohl and 
McArthur. [47]; Deshmukh and Sridhar. [42]; Ningth-
oujam et al. [48]; Sanasam et al. [49]; Jami et al. [50] and 
Zothanpuia et  al. [45]. There are also several genera of 
actinobacteria other than Streptomyces that are called 
rare genera whose isolation frequencies were lower 
compared to Streptomyces [51]. Only 12% of the actino-
bacterial isolates that were recovered were rare genera, 
which included Kocuria, Nocardiopsis, Amycolatopsis, 
Saccharopolyspora, Rhodococcus, Prauserella, Promi-
cromonospora and Micrococcus, and these genera have 
been previously reported from freshwater habitats [29, 
49, 50, 52]. To the best of our knowledge, Amycolatopsis, 
Prauserella and Promicromonospora have not yet been 
reported from freshwater sediments and were isolated 
for the first time in the present study. However, halophilic 
actinobacteria, Amycolatopsis halophila [53], Prauserella 
salsuginis, Prauserella flava, Prauserella aidingensis, and 
Prauserella sediminis [54], were reported to be isolated 
from a saline lake in Xinjiang Province, northwest China, 
while Promicromonospora thailandica has also been 
reported from marine sediment [55].

Actinobacteria are a potential candidate to fight against 
multidrug-resistant organisms and are well-known pro-
ducers of antimicrobial compounds, and actinobacte-
ria have been found in different habitats worldwide [4, 

20, 21, 40]. The present study reports the antimicrobial 
activity of sixty-eight actinobacterial isolates that showed 
activity against at least three of the tested pathogens. 
Some rare genera of actinobacteria, such as Kocuria, 
Nocardiopsis, Amycolatopsis, Saccharopolyspora, Rhodo-
coccus, Prauserella, Promicromonospora and Micrococ-
cus, were also evaluated for their antimicrobial activities 
in the present study. Among them, Saccharopolyspora 
sp. DST31, Nocardiopsis DST32, Rhodococcus sp. DST38 
and Nocardiopsis DST95 showed activity against five of 
the six tested pathogens. Sibanda et al. [29] isolated act-
inobacteria belonging to Saccharopolyspora and Actino-
synnema from the Tyume River, South Africa, and found 
antibacterial activity against the tested pathogens, which 
supports the present investigation. Several other rare 
genera of actinobacteria from freshwater habitats, except 
for Amycolatopsis, Prauserella and Promicromonospora, 
have been previously reported for their antimicrobial 
activity, as discussed earlier.

Six potential Streptomyces strains that showed a 
broad spectrum of antimicrobial activities against all 
tested pathogens were further selected, and the metha-
nolic extracts of the strains showed better activity using 
the agar well diffusion method compared to the fil-
ter paper disk diffusion assay, which was supported by 
the findings of Gebreyohannes et  al. [40]. Recently, we 
recorded the potential microbial activity of Streptomyces 

Fig. 4  MRM extracted ion chromatogram of reference analyte: a trimethoprim, b fluconazole, c ketoconazole, d rifampicin
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Fig. 5  MS/MS Spectra of reference analytes; a trimethoprim, b fluconazole, c ketoconazole, d rifampicin (as per [21])



Page 11 of 14Zothanpuia et al. Microb Cell Fact  (2018) 17:68 

cyaneofuscatus from freshwater sediments of Tamdil 
Lake [21]. Broad-spectrum antimicrobial activity was 
also measured in Streptomyces sp. AZ-NIOFD1 from the 
Nile River [56]. Various potential strains of Streptomy-
ces have also been identified in freshwater habitats [21, 
57–59]. The methanolic crude extract of Streptomyces 
flavogriseus DST52 showed antimicrobial activity with 
an MIC value of 0.003 mg/ml, which was lower than the 
actinobacterial strain SMS_SU21 from a mangrove eco-
system that showed antimicrobial activity with an MIC 
value of 0.05  mg/ml [60]. The MIC of Streptomyces sp. 
DST119 extract was 0.015 mg/ml against S. aureus, while 
that of Streptomyces flavogriseus DST52 was 0.056  mg/
ml, which was far lower than those of the actinobacterial 
crude extract (1.65 and 1.84 mg/ml) against S. aureus and 
E. coli, respectively [40].

PKS-II, phzE and NRPS have been extensively 
described as responsible for the synthesis of a broad 
range of structurally diverse secondary metabolites in 
actinobacteria [7, 21, 61]. PKS and NRPS are responsible 
for the synthesis of bioactive polyketides and peptides, 
while phenazine is an antibiotic that has been reported 
to be derived from phzE, and all three genes are all 
renowned for playing vital roles in biological control [7, 
21, 62]. The present study also correlated antimicrobial 
compounds with reference to their biosynthetic genes in 
some of the selected strains. Among the selected strains 
that showed antimicrobial activity against all tested path-
ogens, the biosynthetic genes PKS-II, phzE and NRPS 
were all detected and amplified with the expected size in 
Streptomyces sp. DST116 and DST119. However, none 
of the genes were detected in Streptomyces cellulosae 
DST28, which clearly showed that the strains that show 
antimicrobial activity do not necessarily contain PKS-II, 
phzE or NRPS genes, and these findings are in agreement 
with previous studies [63, 64]. The biosynthetic genes 
for six selected Streptomyces strains were sequenced 
and deposited in NCBI database and Genbank acces-
sion number were given as MG200184–MG200188 for 
NRPS; MG200189–MG200192 for PKSII; MG200193–
MG200194 for phzE.

In the present study, four antibiotics were detected 
and quantified using the UPLC–ESI–MS/MS method. 
This method has been successfully employed to quan-
tify bioactive compounds such as antibiotics and phe-
nolic compounds [15, 21]. Antibiotics such as rifamycin 
and trimethoprim were detected and quantified from 
the crude methanol extract of six Streptomyces strains, 
which was supported by the findings of Passari et al. [19]. 
Fluconazole and ketoconazole were also quantified in all 
selected extracts of Streptomyces strains, which were also 
recently reported from Streptomyces cyaneofuscatus iso-
lated from Tamdil Lake, Northeast India [21].

Secondary metabolite profiling based on GC–MS 
is becoming a foundation in the field of biological sci-
ences and has been successfully employed to determine 
VOCs from various samples [20, 21]. The actinobac-
teria phylum has been reported as prolific producers 
of thousands of bioactive secondary metabolites. The 
present investigations measured 35 VOCs from six 
methanolic extracts of Streptomyces strains, of which 
maximum compounds were retrieved from Strep-
tomyces albidoflavus DST71. Among the identified 
compounds from extracts of Streptomyces albidofla-
vus DST71, all except oxirane, 2-butyl-3-methyl-, cis, 
azacyclodecan-5-ol, N-(4-chlorobenzenesulfonyl)aze-
tidin-3-one and 1,3,5-triazaadamantane detected com-
pounds that have the antimicrobial activity, as reported 
by earlier researchers [65–73]. In the present study, the 
amount of hexanal in the methanol extract of Strepto-
myces albidoflavus DST71 was found to be maximum 
(23.2%), and this compound was reported to be one 
of the constituents of the crude extract of the roots of 
Leonurus sibiricus for its antibacterial, anti-inflamma-
tory, antioxidant, and antiproliferative properties [70]. 
Antimicrobial activities of 2-thiophenecarboxylic acid, 
5-(1, 1-dimethylethoxy)- and heptanal have also been 
observed in the extracts of Phormidium autumnale and 
Chlorella vulgaris, respectively [69]. The antimicrobial 
activity of glutaraldehyde was also discussed earlier [66, 
74] and was also measured in the extract of Streptomy-
ces sp. DST25. All compounds extracted from the crude 
extract of Streptomyces sp. DST25 except cyclopropane, 
1-butyl-2-(2-methylpropyl)-were previously reported in 
antimicrobial studies [71, 75, 76]. The amino acid valine 
was also determined as a major compound next to glu-
taraldehyde in the present study, and this compound 
increases the production of the glycopeptide antibi-
otic, as reported by Beltrametti et al. [77] in the actino-
bacteria strain Nonomuraea sp. Only pyrrolo [1, 2-a] 
pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) 
out of the six compounds detected from the extract of 
Streptomyces sp. DST119 has been previously reported 
for its antimicrobial activity [78, 79]. Two of the 
seven compounds, carbonic acid, 2,2,2-trichloroethyl 
undec-10-enyl ester and 1-butanol, 2-methyl-acetate 
from the extract of Streptomyces flavogriseus DST52 
were reported earlier for their antimicrobial activities 
[80–82]. Only one compound was determined in the 
extracts of Streptomyces cellulosae DST28 and Strepto-
myces sp. DST116 with a single peak. Di-n-octyl phtha-
late obtained from Streptomyces cellulosae DST28 was 
reported earlier by various researchers for its antimi-
crobial activity [83, 84], while no activity was reported 
for 2-methoxy-4,5-diphenyl-6-(2′-phenylethyl)-
pyrimidine obtained from the extract of Streptomyces 
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sp. DST116 for its antimicrobial activity. Thus, from 
this study, we conclude that further investigation of the 
purification of these potent compounds will certainly 
explicate their efficacy in the pharmaceutical industry. 
Hence, the usage of freshwater bio-resources can be an 
ideal source for the isolation of actinobacterial cultures 
with rare and unique properties that could certainly 
add to the ever-growing pharmaceutical needs and 
other biotechnological applications.
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