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ARTICLE INFO ABSTRACT

Keywords: There is an increasing demand for developing the novel methods for the detection of clinically important me-
Creatinine tabolites. One among those metabolites is creatinine (2-amino-1-methyl-5H-imidazol-4-one), a waste product,
Nfiimt“hnomgy produced by the catabolism of phosphocreatine from muscle and protein metabolism. It is very important to
Kl ney measure the creatinine level in human blood and urine as it reflects the muscular and thyroid functions.
Biosensors P . . . :

Nanomaterials Importantly, the elevated level of creatinine is considered to be as impairment of the kidney. There are numerous

methods existed to measure the concentration of creatinine in blood and urine. In this review, we consolidated
the different conventional methods (chromatography, spectroscopy, immune sensor and enzyme-based de-
tections) and their shortcomings. On other hand, we also dissertated the various nanomaterials (chem-
iluminescence, voltametric, amperometric, conductometric, potentiometric, impedimetric and nano polymer)
based creatinine detection methods and their advantages. Finally, we also focussed on the point-of-care detection
methods of creatinine determination. This review can conclude the low cost, more efficient and reliable

Kidney marker

nanotechnology-based new sensors for the detection of creatinine.

1. Introduction

The creatinine is a waste product of creatine phosphate derived from
muscle and protein metabolism. It is constantly excreted from the body
depending on the mass of protein and muscle metabolism [1]. Kidneys
purify blood by filtering its contents and are released into urine.
Creatinine is one among the metabolites expelled from the body by the
function of kidneys. Its level in body can be checked through blood
sample and the high level determines the impairment of kidneys. Protein
and muscle mass are also the determining factors of creatinine content in
human body; hence men have relatively higher muscle mass and usually
contain higher creatinine than woman and children. The creatinine
formed in the muscle transported to kidney for the excretion as illus-
trated in Fig. 1. Creatinine test can be conducted by various methods,
some of the commonly exploited methods includes BUN (blood urea
nitrogen) test or comprehensive metabolic panel (BMP or CMP). If CMP

tests are observed to be abnormal then there may be relative risk of
kidney related diseases. Estimated glomerular filtration rate (eGFR) is
the blood filtered per minute by the kidneys. This test can screen and
detect early kidney damage (EKD), this in turn can diagnose kidney
health status and prevent from chronic kidney diseases (CKDs). CKDs are
notified one of the most prevalent and cost consuming disease facing
worldwide [2]. The prevalence of CKDs in global scenario existed be-
tween 11% and 13% [3].

Creatinine determination can be performed by several methods,
varying from conventional to modern methods. Conventional methods
employed are chromatography or enzyme-based methods. On other
hand, modern methods namely nanotechnology-based methods, mo-
lecular imprinting (MIP), electrochemical methods, amperometric bio-
sensors, potentiometric biosensors, conductometric biosensors,
impedimetric sensors and chemiluminescence sensors have been
developed in recent past for the detection of creatinine. Conventional
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methods are relatively simple and cost effective, however, in certain
cases the results produced are low in reproducibility, low accuracy, low
reliability and low specificity [4,5]. On other hand, nano-based methods
offers great advantages and has potential capability to address major
disadvantages associated with conventional methods.

2. Pros and cons of the different approaches for the creatinine
detection

The most commonly exploited conventional methods of creatinine
detection are spectrophotometry [4], colorimetry, high pressure liquid
chromatography (HPLC) [5], mass IR spectroscopy [6], spectroscopy
[71, capillary zone electrophoresis [8], enzymatic assays and nuclear
magnetic resonance (NMR) [9]. One of the oldest methods of creatinine
detection is chromatography method, where it separates molecules from
a complex mixture. However, these methods encounter a number of
limitations such as low rate of reproducibility, stability (creatinine sta-
bility) and sensitivity. Moreover, conventional methods do not address
the interventions occur by numerous biological metabolites (ascorbic
acid, cephalosporins, fructose, glucose, ketone bodies) which causes the
inaccurate results either may be quantitatively or qualitatively. Such
hindrances create inaccuracy in creatinine determination. Reliability of
the interpreted results is much lower than those derived from modern
techniques such as molecular or nano-based studies.
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The modern and novel methods of creatinine detection is made
possible with the development of nanoscale materials. Nanoparticles
(NPs) are small building blocks operating exceptional applications and
developments made through nanotechnology. Creatinine determination
methods employing nanoparticles offers great advantages like higher
sensitivity, improved stability, better absorbability, cost effective, sim-
ple procedure and higher accuracy. Specially, metallic nanoparticles are
widely exploited in the estimation of creatinine concentration and
extensively used in early detection of chronic kidney disorders (CKD)
[10]. It is very interesting that nanoparticles have been successfully
synthesized using various methods namely, UV mediated, sunlight
mediated, sonocatalytic, plant mediated, temperature assisted and using
some biological materials [11-23]. These nanoparticles exhibit many
unique properties such as high surface volume ratio, higher absorption
ability and enhanced catalysis makes them highly fit to utilize as sensors
in medical study to detect several ailments at initial stages. The main
advantage of these nanoparticles includes the application in electro-
chemical reactions to enhance the electron transport in enzyme active
site for creatinine detection [24].

3. Conventional methods employed in the detection of
creatinine

The most frequently employed conventional methods for detecting
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Fig. 1. (a) Creatinine, a waste product, transport into kidney through vascular system (b) The process of metabolism of creatinine in different organs.
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the levels of creatinine includes spectrophotometry, HPLC, mass spec-
troscopy, immunological and enzyme assay methods. Basic mechanism
behind the functioning of various types of electrochemical sensors is
illustrated in Fig. 2.

3.1. Chromatography-based methods

HPLC (High performance liquid chromatography) is one of the most
sensitive technique which is employed not only to separate but also to
quantify the serum levels of creatinine by measuring absorbance at 234
nm using cation exchange chromatography [25]. The sensitivity of
HPLC based detection method is found to be 0.28 nM [26]. GC-MS can
also be considered for the quantification of creatinine in the given
sample. However, the method is very laborious, time consuming and
require separation step before the sample is subjected for analysis. On
other hand, the samples containing creatine should be removed from the
samples to prevent the derivation of creatine to creatinine, otherwise
causing the false quantification of creatinine. This is very important step
in determining the creatinine using gas chromatography [27]. LC-MS is
considered to be much faster method to determine the creatinine as
compared to HPLC and GC-MS and does not require any derivation step
of the sample before its analysis [27]. In LC-MS based detection solvent
protein precipitation is used for cleaning the samples. To minimize the
loss of creatinine during sample preparation, deuterated creatinine was
added before treating with ethanol. The use of isotopic creatinine as
reference material helps in quantifying the creatinine accurately in the
unknown samples [28].
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3.2. Spectroscopy based methods

The normal spectroscopy method involves the treatment of samples
(blood/urine) with picric acid which forms red colour whose absorbance
can be measured in the range of 470-550 nm with absorbance maxima
at 520 nm. The reaction mechanism is illustrated in Fig. 3. However, the
reaction was found to be non-specific and depends on several factors
such as pH, temperature, sample purity, RBC and other proteins in the
blood sample which may give erratic results [29,30]. In addition,
spectroscopic measurements require more sample volume (up to 2.0
ml).

The advanced spectroscopic detection of creatinine involves both
absorbance and emission of fluorescence in the presence of chalcone
PTP ((E)-3-(pyrene-2-yl) - (3,4,5 tri methoxy phenyl) prop-2-en-1-one. It
displayed two absorbance peaks at 297 nm and 407 nm at low pH,
depending on the concentration of creatinine. Dal Dosso et al. (2017),
developed the point-of- care sensor comprising of multilayer polymeric
cartridge with multi enzyme system (involved in hydrolyzing creatinine)
integrated with microfluid pump for sampling and detection of creati-
nine at 570 nm. This point-of-care sensor works on the change in colour
due to the release of HyO5. The sensitivity of the above detection method
was found to be up to 1 nM concentration [31,32].

3.3. Infrared and Raman spectroscopies

Molecules with polar bonds contribute to infrared absorption from
700 nm to 2500 nm [33]. Analysing the biomolecules using IR is very
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Fig. 2. Mechanism involved in different chemical sensors available for the detection of creatinine.
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Fig. 3. The creatinine reacts with picric acid forms the chromogen; a colour compound spectroscopically measured at 520 nm.

difficult as they are very complex in nature with several overlapping
bands. The IR spectra for organic molecules is often predicted in two
regions (i) functional group (>1500 em™ ) and (ii) fingerprint region
(<1500 cm™!) [34]. Raman spectroscopy determines the structural
finger prints of biomolecules based on the vibration modes of molecules
[35]. To minimize the sensitivity issues associated with IR and Raman
methods, the urine samples were analysed by surface enhanced Raman
spectroscopy. The signature peaks for creatinine were observed at 888
crn’l, 958 cm ™! and 1444 cm~! due to C=0, C-C and CHs [36]. Exci-
tation of wavelength is the key factor to minimize the fluorescence of
urine sample and reduce the signal to nose ratio. The sensitivity of
Raman spectroscopy was found to be 0.2-15 mg/L [37,38].

3.4. Immune sensor

Detection of compounds/molecules based on the immunological
(antibodies) reaction are called immune sensors. For detecting the
creatinine levels in the given samples indirect method is used, where the
signal is generated by the emission of light (fluorescence or lumines-
cence). The sensor is made of creatine modified platinum electrode
(electrochemical cell) [39]. The test sample is mixed with
anti-creatinine antibodies and mouse anti-IgG conjugate placed in the
modified electrochemical cell. After washing the sample, glucose was
added and the generated HyO, will be measured by amperometric
sensor. The detection limit of the above sensor ranges from 0.09 to 90
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pM. The method is very reliable, less interference and very sensitive
[40].

3.5. Enzyme based detection of creatinine

The enzyme mediated creatinine detection can be broadly divided
into three types (1) HyO» (2) NH4" (3) Electrical potential difference
[41]. In case of HyO5 based detection, creatinine is treated with creatine
amido/aminido hydrolase in presence of water to produce either crea-
tine or sarcosine. The Hy05 released during the above enzymatic reac-
tion will be detected by oxygen-based electrodes using amperometric
sensors. In the second type, the amount of ammonia released during the
enzymatic reaction of creatinine deiminase which converts creatinine to
N-methyl hydantoin in presence of water and releases NH;" which is
detected either by pH/potentiometric sensors as mentioned in Fig. 4.
The levels of NH,4" is directly proportional to the creatinine concen-
tration. However, the sensitivity of the reaction is hampered by the
NH4 " present in blood/urine sample [42]. While, in third type creati-
nine is hydrolyzed to creatine/sarcosine in presence of creatinine ami-
dohydrolase/aminido hydrolase and water. In this sensors, the
creatinine concentration is measured in terms of change in electrical
potential and is measured by using potentiometric sensors [43]. The
efficiency of the above system greatly depends on the complexity and
sensitivity of enzymes being used [44]. Based on the number of enzymes
being used for the detection of creatinine, they are classified into first,

N-methyl hydantoine

NH,!

@ mmm) pH/ Potentiometric sensor

Fig. 4. Ammonia released during the enzymatic reaction of creatinine deiminase which converts creatinine to N-methyl hydantoin in presence of water and releases

NH, " which is detected either by pH/potentiometric sensors.
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second and third generation biosensors. In case of first-generation,
creatinine deiminase is immobilized on the membrane along with ni-
trifying bacteria (Nitrosomonas/Nitrobacter species) on to dissolved
oxygen (DO) meter. The NH4" ions thus produced by the enzymatic
reaction with creatinine is used by the Nitrosomonas and Nitrobacter
species and decrease in oxygen levels at platinum electrode (DO sensor)
[45,46]. The conventional methods described above have several short
comings such as low reproducibility, require large sample volume,
sample analysis time, stability and cost [23,44].

4. Nanoparticle mediated sensors for the detection of creatinine

In order to overcome the flaws in conventional methods for detecting
creatinine, scientists have developed advanced detecting techniques to
determine the creatinine concentration in the sample (blood/urine) by
employing nanomaterials in their analysis. Silver nanoparticles (AgNPs)
coated with picric acid is treated with the test sample to generate red
colour by performing centrifugation step and quantifying the creatinine
levels [47]. On other hand, AgNPs coated with citric acid was reported
to cause creatinine aggregation in urine sample at pH 12 [48]. A
concentration-based creatinine detection method was developed by
coating Hg" on AuNPs in urine sample which change the colour from red
to blue [49]. The above nanomaterial-based detection methods are rapid
and fast, but the precision is not accurate and can be considered for
qualitative detection. It was reported that even three creatinine hydro-
lyzing enzymes were co-immobilized on the membrane. Creatinine
amidohydrolase converts creatinine to creatine, which is subsequently
converted to sarcosine by the action of creatinine aminido hydrolase.
The resulting sarcosine is finally converted to glycine and the decrease in
oxygen levels are detected in the third step of enzymatic reaction [50].
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The limitation of the above detection is the interference of atmospheric
oxygen. In second generation, three enzymes are coupled (covalently
immobilized) on the membrane. The first enzyme (creatinine deiminase)
will hydrolyze creatinine to produce NH, ", followed by the synthesis of
glutamate and finally formation of 2-oxoglutarate in presence of gluta-
mate oxidase. The decrease in oxygen levels during the above reaction
cascade is detected by the oxygen electrode. In case of third generation
system, three creatine hydrolyzing enzymes were co-immobilized on to
the membrane. The first enzyme (creatinine amidohydrolase) will
convert creatinine to creatine which is converted to sarcosine in pres-
ence of second enzyme (creatinine aminido hydrolase), finally glycine is
produced from sarcosine in presence of third enzyme (sarcosine oxi-
dase). The constant decrease in the oxygen levels in the sample is
detected by oxygen electrode. Amperometric detection is used for the
detection of oxygen levels in the above enzymatic methods [43,51].

4.1. Chemiluminescence based systems for creatinine sensing

In this chemiluminescence based systems, the analyte or test sample
will be detected by chemical reaction between the analyte and the
substrate by excitation and deexcitation of molecules to ground state
and release energy either in the form of heat or light. The sensitivity of
the above sensors for creatinine detection is 72 nM [52]. In another
method, creatinine in serum samples is detected by using
palladium-naphthalimide fluorescence (FCP) probe by incubating the
sample for 30 min. The creatinine palladium complex will allow the
release of the FCP which in turn increases the fluorescence intensity. The
above method was validated with Jaffe method with efficiency of
95-99% respectively [53]. A photoluminescence sensor was developed
by functionalizing bovine serum albumin (BSA) with carbon-gold

Citrullus lanatus

Hydrothermal
Carbonization

Veesete

PL-AuNFPs
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Fig. 5. Synthesis of C-Au nanocomposite from Citrullus lanatus and photoluminescence of colloidal solution decreased due to attachment of creatinine with BSA

thereby sensing the creatinine.
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nanocomposites. In this sensor, the luminescence will decrease with
increase in concentration of creatinine, as the nanocomposite forms
complex with creatinine which causes the release of BSA from the
composite as illustrated in Fig. 5. The sensitivity of the above sensor
ranges from 17 pM to 1.7 M in all test samples [20].

4.2. Nanomaterials based voltametric method of creatinine sensing

In this method, the polymers made of carboxylic polyvinyl chloride,
polyaniline or cotton fiber membrane are imprinted with Au nano-
particles by electro polymerization. The sensitivity of the above sensors
ranges from 0.14 nM to 0.35 nM. However, the disadvantage with the
above method is duration of sample analysis ranges from 3 to 5h [54]. In
another method, molecular imprinting of polypyrrole film doped with
phosphomolybdate on glassy carbon electrode could able to record
creatinine levels by differential voltammetry [55]. Voltametric detec-
tion of Cu-creatinine complex was enhanced by treating the serum
sample with PbO, which prevented the interference of uric acid. Also,
Molecular imprinting of carbon electrode with FeCls cotton fiber
membrane was used to detect the creatinine concentration in the given
test sample. Creatinine forms complex with Fe3* leads to gradual
decrease in Fe3* ion concentration resulting the decrease of current
which will recorded by the voltameter as mentioned in Fig. 6. The above
method does not require any pre-treatment step and does not interfere
with serum albumin [56]. An indirect method for detection of serum
cysteine C (another biomarker for Chronic Kidney Disease, CKD) was
developed by imprinting cysteine protease, papain on multiwalled
nanotubes. The amino terminal of papain is covalently linked to elec-
trode. The interaction between papain and cysteine C is monitored
electrochemically by the electrode. The detection limit of the above
electrode was found to be 0.006 nM [57]. Molecular imprinted glassy
carbon electrode was developed by the functionalization with Ag
nanoparticles or polyoxometalate to detect creatinine in the sample with
detection limits of up to 1.5 x 10711 M [58].

Polymer

l
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4.3. Nanomaterials based amperometric methods for the detection of
creatinine

In this method, the sample is detected by the chemical reaction
occurring between analyte and electrode. Creatinine is detected either
by employing single or multi enzyme system in presence of three elec-
trodes [59]. The working electrode is made of Ag which is used to sense
the creatinine, while the other two are counter and inert electrodes. The
amount of oxygen (H03) released by the enzymatic reaction will be
detected by the working Ag electrode. However, the sensitivity of the
sensor is greatly affected due to the complexity of enzymes and the use
of multiple sensors [60]. Covalent immobilization of creatinine amido-
hydrolase or sarcosine oxidase with zinc oxide nanoparticles on to either
multiwalled carbon nanotubes/chitosan/polyaniline/could able to
detect the creatinine levels up to 0.5 pM in 10 s at pH 7.5 and 30 °C [61].
The above creatinine biosensor could able to retain 85% of its activity
when stored at 4 °C for 4 months. Co-immobilization of creatinine
amidohydrolase or creatinine amindino hydrolase by covalent interac-
tion with N-ethyl-N-(3-dimethylaminopropyl) carbodimide (EDC) and
N-hydroxy succinimide on polyaniline or carboxylated multi-walled
carbon nanotube nanocomposite on the surface of platinum electrode
as mentioned in Fig. 7. The above biosensor showed optimum activity at
pH 7.5 and 35 °C with response time of 5 s. The nano biosensor retained
85% of its activity even after 180 days of storage or 150 times of regular
use [24]. Co-immobilization of creatinine hydrolyzing enzymes (creat-
inine amidohydrolase or creatinine amindino hydrolase) on to Fe3O4
nanoparticles in presence of chitosan-polyaniline complex. When this
complex is polarized with Ag/AgCl, the biosensor displayed optimum
activity (1-800 pM) at pH 7.5 and 30 °C with response time of 2 s. The
above biosensor could retain 90% of its activity when stored at 4 °C (120
uses; 200 days) [44]. Similarly, enzyme nanoparticles (creatinine ami-
dohydrolase or creatinine amindino hydrolase) were immobilized on
glassy carbon electrode for amperometry detection of creatinine in
blood samples in 10 s at pH 7.2 and at 34 °C with limit of detection up to
50 pM. The biosensor was stable up to 30 days when stored at 4 °C [62].
An improved amperometric biosensor was developed by modification of
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Fig. 6. Polymer and iron based voltametric detection of creatinine.
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Fig. 7. Amperometric detection of creatinine using platinum and carbon nano tubes.

glassy carbon electrode co-immobilized with creatinine hydrolyzing
enzymes and when polarized against Ag/AgCl at pH 6.0 and 25 °C with
response time of 2 s. The efficiency of the above biosensor was found to
be around 90% (240 days of continues usage) when stored at 4 °C [63].
Creatinine in the given test sample is monitored by amperometric
measurement of the Fe-creatinine complex formed and detecting the
levels of free Fe>™ which causes alteration in current generated as
described by Kumar et al. (2018). Thus, the above method does not
require any pre-treatment step and can abort the interference or inter-
action of albumin with the test sample [64]. As compared to potentio-
metric or conductometric biosensors, amperometric biosensors offers
great advantages in terms of sensitivity, cost, rapid testing and easily
disposable.

4.4. Nanomaterials based conductometric methods for sensing of
creatinine

In this method, the creatinine levels in the sample will be detected
my measuring the ions present or released during the reaction. Creati-
nine hydrolyzing enzyme was covalently immobilized on to glutaral-
dehyde with ammonia sensor. Test sample containing creatinine is
placed on the sensor which produces the ammonium ions creating a
change in electrical resistance which is detected by the ammonium
sensor. The detection limit is 2 x 10~% M, response time of 10 s, pH 7.0
and storage stability of 1 month at 4 °C [65]. Ammonium sensitive
conductometric biosensor can be developed using polyvinyl chlor-
ide-NH; membrane [65]. Conductometric sensor developed by immo-
bilizing creatinine deiminase on to polymeric nanocomposite (polyvinyl
alcohol/polyethyleneimine with AuNPs) can be used for the detection of
creatinine [66]. The above method can be employed to determine the
concentration of various unknown samples which are not light sensitive,
compatible and no need of any reference electrode with good limit of
detection [65,66].

4.5. Nanomaterials based system for the detection of creatinine

Creatinine levels are detected based on the variation in potential
difference or pH or the release of NH4" ion during the reaction. Mo-
lecular imprinting of creatinine hydrolyzing enzyme (creatinine deimi-
nase) by either ionic/covalent/cross linking on to a polymeric support
(chitosan/carboxylated polyvinyl chloride/tetrahydrofuran) or Ag
nanoparticles are very popular for detecting the creatinine levels in the
samples. Certain electroactive materials made of creatinine molybdo
phosphate, creatinine picrolonate and creatinine tungsto phosphate
were developed to integrate with poly vinyl chloride membranes to

promote the diffusion of creatinine to the enzyme layer to enhance the
signal generation [67]. A wired potentiometric electrode was developed
to detect the creatininium ion in urine and plasma samples [68]. The
results were validated with Jaffe gold standard method. The disadvan-
tage with the above potentiometric biosensor is, the test samples need to
be buffered at pH 3.8 to convert neutral creatinine to creatininium ion
[69]. The detection limit of the above sensors varies from 5 pM —0.1 mM
concertation [49,70]. However, the stability of enzymes is a big concern
for this type of sensors [71]. High purity metallic sensors with polyvinyl
chloride membrane were produced to sense the levels of creatinine in
blood and urine samples [72]. Molecular imprinting of polymeric ma-
terials (polyvinyl chloride) was used to dope the electrode to detect the
creatine levels, an indirect evaluation of creatinine. The exchange of
ionic charge take place across the membrane by binding of creatine to
the membrane receptors which produces extra surface charge based on
ionic and electronic conductors [73].

4.6. Nanomaterials based impedimetric/capacitive systems for the
detection of creatinine

In this system, the creatinine detection greatly depends on the
thickness and the amount of sample absorbed to the receptor present on
the electrode. Lesser the thickness of molecular imprinting of polymeric
membrane (methylene diacryl amide or alkynyl alcohol or acryl amido
methyl propane sulfonic acid), more will be the efficiency of sensor.
Molecular imprinting of carboxylic polyvinyl chloride on to gold plated
electrode followed by polymerization with N, N’-methylene bisacryla-
maide to cover the free space such that creatinine will bind specific to
the surface of gold-plated electrode. The levels of creatinine were
qualitatively detected by using either differential pulse voltammetry,
UV-visible spectroscopy or cyclic voltammetry with detection limit of
up to 0.08 ng/ml [54]. The concentration of analyte (i.e) creatinine is
determined by change in capacitance of the electrode [67]. Since, there
is no chemical or enzymatic reaction involved in this system as a result
there will be no change in pH. Thus, the response time is slightly higher
as compared to amperometric or potentiometric system. In addition to
the above, the electrode fouling and signal to noise ratio is higher in
these sensors [74,75].

4.7. Nano-polymer based detection of creatinine

The world of medical science has undergone a drastic improvement
upon discovery of polymeric nanoparticles (PNPs) over recent years.
Properties of PNPs such as small in size has allowed controlled release of
chemicals and effective reach of target sites. Hassanzadeh and Ghaemy,
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2017 recently conducted an experiment to detect creatinine by magnetic
molecularly imprinted polymer NPs [76]. In this study, they have
developed a novel method to detect and separate creatinine based on
molecular imprinted polymer nanoparticles (MCMIPNs). It was pre-
pared by polymerising methacrylic acid (MAA) in presence of magnetic
Fe304 NPs functionalised with 3-(trimethylsilyl)propyl methacrylate
(TMSPMA) and in presence of a cross-linker; ethylene glycol
di-methacrylate (EGDMA). The polar carboxylic acid groups in MAA
were supplied to the molecularly imprinted polymers in order to
improve the interaction of functional monomers and template molecules
which plays a crucial role in selection. Detailed characterization of
MCMIPNs were done for adsorption or desorption course, size, selec-
tivity, structure, reusability, magnetic and thermal properties. Other
factors effecting adsorption like interaction period, pH, Fe3O4 NPs
amount and initial concentration of creatinine present prior to treatment
are also studied. The MCMIPN of 25 nm size records, an outstanding
affinity for creatinine with a percent of 99 efficiency of loading. The
MCMIPN nano-polymer showed tremendous recognition and binding
capability of creatine when compared to N-hydroxysuccinimide (NHS)
and i-tyrosine. In another study conducted by Nanda et al., 2015
developed a novel method creatinine detection using nano-polymer
based sensors. Sensor employed are poly-lactic-co-glycolic acid (PLGA)
and 1-butyl-3-methylimidazolium (BMIM) chloride, in the existence of
2/,7'-dichlorofluorescein diacetate (DCFH-DA) [77]. Functional porous
polymer like structure (FPPS) were formed from PLGA and BMIM.
Creatinine entrapped in FPPS gets rapidly hydrolyzed and releases hy-
droxyl ions. These ions get converted from DCFH to DCF™, giving out
green colour. This conversion leads to in enlargement of FPPS and im-
proves solubility. Detection of creatinine levels of even 5 pM and also
from blood can be measured by DCFH-based nano sensor. This novel
method developed could be employed in investigative applications for
observing individuals with kidney disorders.

5. Nanomaterials based point-of-care methods for the detection
of creatinine

Samples which cannot be analysed by colorimetric or electro-
chemical methods can be analysed by advanced sensing devices. The
creatinine in blood samples can be detected by paper-based sensors
which allow the separation of plasma and blood. Several point-of-care
devices has been developed recently which works by enzymatic hydro-
lysis of creatinine to produce HoOp and NH** can be detected by
amperometric or spectrophotometric methods. However, the accuracy
and efficiency of the sensors are hampered by the complexity, sensitivity
and stability of enzymes. Stat/Roche-Reflotron/Abaxis-Piccolo based
sensors exhibit greater potential and offers a great scope to be consid-
ered as point-of-care device for measuring the creatinine levels in blood
samples with low sample volume, high sensitivity and lesser time for
analysis. Immobilization of multiple enzymes which can hydrolyze the
creatinine to generate HyO; can be detected by colorimetric sensor can
be considered for point-of-care device. As immobilized enzymes are
quite stable, long lasting and can analyze the sample in less time.
However, the cost incurred in developing such enzyme-based sensors is
rather expensive. Regeneration of biosensors after its biosensing activity
are very important in point-of-care diagnosis process. The regeneration
of biosensors can be performed by altering the composition of solvent by
either chemical/thermal modifications to promote the unbinding of
analyte and the sensor or minimizing the ionic/covalent interactions
between the sample and sensing probe or altering the hydrophobic in-
teractions and enhancing the negative potential by electrochemical
modifications. Employing the above strategies, we can recover the bio-
sensors for further use and applications [75]. A non-enzyme-based
point-of-care sensor developed by Kumar et al. (2017a) were the com-
plex formed between Fe3" with creatinine, helps in analyzing the urine
samples with greater efficiency and sensitivity [56]. The sensor is stable
to temperature (20-40 °C) and even minimal interference of albumin.
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Any point-of-care device developed should be selective, easy to handle,
generate reliable results (sensitivity should be high), minimal detection
time and easy disposal. At laboratory scale level several point-of-care
devices were developed to detect the creatinine levels in blood and
urine samples but no accurate biosensor which can considered for
point-of-care detection. There is a great need to develop biosensors in
the form of wearable devices such as diapers or bags or microneedle to
sense the levels of creatinine using advanced technologies. The other key
factors to be considered while developing biosensors includes cost,
shelf-life, fouling, disposability, calibration/recalibration frequency and
finally validation using either Jaffe method/HPLC based gold standard
techniques. Finally, we have listed various creatinine detection methods

Table 1
Various methods used for the detection of the creatinine (For creatinine, 1 mM is
equal to 0.113 g/L).

Method Lower Limit Specificity ~ Time/ Reference
of Detection Interference
(Sensitivity)
Uric acid/Hg 2+ 0.019 pM High [49]
-AuNPs system
Potentiometric 0.6 pM High [68]
sensor
Amperometric 0.6 pM High Uric acid [78]
sensor
AgNPs on poly 0.19 pM High 20 min [79]1
(pyrrole) thin
film-based SPR
sensor
AuNPs 80 pM High 24 min [80]1
colorimetric
probe
Capillary- 900 M Low 10 min [81]
gravitational
chip
Conducting- 40.4 pM High <5 min [82]
polymer
electrochemical
sensor
Electrochemical 0.27 mM Low 5 min [83]
sensor
Enzyme- 5.3 M High [84]
amperometric
sensor
AuNPs based 12.7 nM High <5 min [85]
colorimetric
sensor
AuNPs 121.2 pM Low 3 min [86]
Bovine serum
albumin,
cationic
components
Ton mobility 5.3 yM High 7 min [871
spectrometric
sensor
Tandem mass 3.5 M High 1 min [88]
spectrometry
Multichanllel 6.7 M High 7.1 min [89]
kinetic
spectrometric
sensor
PEG/ 9.68Nm High <5 min [90]
Hg2+-AuNPs
Colorimetric
sensor
Photonic crystal 6 pM High 30 min [91]1
sensor
Portable 29.2 yM Low 2 min [92]
microfluidic Glucose,
sensor carbonyl
compounds,
haemoglobin,
human serum
albumin,

transferrin, IgG




P. Jayasekhar Babu et al.

in Table 1.

6. Conclusion

Creatinine is a waste metabolic bi-product filtered out of the body by
kidneys. The high values of the creatinine concentration in blood/urine
can be treated as malfunctioning of kidneys. There are quite number of
methods namely conventional methods (chromatography, spectroscopy,
Infrared and Raman spectroscopy, immune sensor, enzyme-based
detection of creatinine) and nanoparticle-based sensors (chem-
iluminescence, voltametric, amperometric, conductometric, potentio-
metric, impedimetric/capacitive systems, nano-polymer based and
point-of-care detection) are available for the detection of creatinine.
Biosensor and nano-based detection techniques become popular as they
shown high sensitively and less reactive time. Recently, several point-of-
care biosensors are being developed to measure the levels of creatinine
using blood and urine sample. Overall observations suggested that the
cost, sensitivity, specificity and reproducibility of many detection
methods are still challenging. Specially, cost of chemiluminescence
based biosensors are quite high which restricts its usage for the creati-
nine detection. The identification and use of other biological sample/
fluids to determine the levels of creatinine should be given more
emphasis rather than depending only on blood and urine-based analysis.
In conclusion, any device developed can be calibrated easily to deter-
mine the creatinine concentration difference between healthy and
diseased subjects.
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