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ABSTRACT: Using first-principles calculations, we report on the structural and electronic
properties of bilayer hexagonal boron nitride (h-BN), incorporating hydrogen (H,) molecules o
inside the cavity for potential H,-storage applications. Decrease in binding energies and H, Storage
desorption temperatures with an accompanying increase in the weight percentage (upto 4%) by
increasing the H, molecular concentration hints at the potential applicability of this study.
Moreover, we highlight the role of different density functionals in understanding the decreasing

Bilayer h-BN

energy gaps and effective carrier masses and the underlying phenomenon for molecular
adsorption. Furthermore, energy barriers involving H, diffusion across minimum-energy sites are also discussed. Our findings
provide significant insights into the potential of using bilayer h-BN in hydrogen-based energy-storage applications.

B INTRODUCTION

Rising energy demands due to rapid increase in population
density and depletion of natural resources is a matter of grave
concern and a major threat to a sustainable future. Carbon
emissions owing to the excessive burning of fossil fuels have
resulted in unprecedented environmental changes in recent
times, which have drastically impacted all living creatures on
this planet. To tackle this, an effective and efficient approach to
balance industrial developments alongside preserving natural
deposits for a sustainable life is highly desirable. Therefore,
enormous efforts are ongoing to capture CO, discharge for the
purification of air,' > though it is also challenging and costly.
While the most effective way of capturing CO, is fast
afforestation which is hard to accomplish due to the limitations
of land and rampant deforestation, use of cleaner energy
resources as an alternative in factories and vehicles could partly
solve issues. In this regard, proposals are underway using
hydrogen (H,) as an alternative fuel, a highly combustible gas
promising for automobiles in the form of fuel cells, to tackle
the global energy crisis with a minimal impact on the
environment.*~*

Hydrogen is generated from biomass and via steam
reforming of natural gas such as methane and water electrolysis
which falls under fossil fuels and renewable resources.’
Methods such as photobiological and photochemical water
splitting are under development, whereas processes such as
alkaline water electrolysis, solid oxide electrolysis, and proton
exchange membrane (PEM) water electrolysis are some of the
established hydrogen production methods.'” PEM water
electrolysis which contributes to around 4% of the global
hydrogen production has been considered one of the most
prominent techniques to generate clean and efficient hydrogen
with a high production rate from renewable energy sources
without any pollutants as byproducts. Moreover, biophotolysis,
steam reforming, autothermal reforming, -electrolysis, dark
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fermentation, and so forth have been proven to have an
efficiency of above 40% but lack in prospects of storage, high
capital costs, transportation, and clean byproducts. Around 70
million tons per annum of hydrogen are produced around the
world of which a large fraction is utilized for industrial
purposes.”’12 Because oxygen (0,) supports the combustion
(2H,+0, — 2H,0+AE), the energy derived out of burning H,
leads to water (H,0O) as a natural byproduct and favors its
utilization as a fuel in reducing the effects of CO, emissions.
Foreseeing the aforementioned prospects, a technical approach
to discover potential new materials for efficient reversible H,
storage is much needed.">"*

The discovery of graphene opened doors to a new era of
technological revolution."”™° Interest in two-dimensional
(2D) nanomaterials thereafter has grown exponentially finding
applications in nanoscale digitization, spintronics, gas sensing,
catalysis, and H, production and storage, to list a few.”' ™’
Due to their largest surface area-to-volume ratio and
exceptional chemical stability, graphene-like materials’"**
such as graphdiyne,””** honeycomb BC,,*>*® borophene,’
CN,*** and g—C3N446_49 layer have already been investigated
and recognized as a safe reservoir for H, storage. Moreover, the
search of potential H,-storage materials in other 2D layered
structures such as hexagonal boron nitride (h-BN),”**” boron
arsenide,”’ black and blue phosphorene,” ™’ boron mono-
chalcogenides,58 and gallium monochalcogenidessg_62 is still
ongoing.
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Figure 1. Top view and side view of pristine bilayer h-BN.
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Figure 2. ELF of bilayer h-BN with the number of H, molecules (a) n; =0, (b) ny =1, (c)ny =2, (d) ny =3, (e) ny =4, () ny =5, (g) ny = 6,

(h) ny = 7, and (i) ny = 8.

H, gas is mostly preserved either by liquefaction under high
compressing pressure®> " or by adsor7ption on the surface or
interstitial region of material cavity.””~”" In relation to this, the
adsorption of H, on the surface of 2D materials has advantages
in terms of safe functionality and cost-effectiveness. For the
effective utilization of H, in fuel cells, the adsorption energy
and gravimetric Wei%ht percentage on the adsorbent should be
sufficiently high.”>”> Recently, vehicles having H, fuel cells
with a gravimetric weight percentage of 6% were successfully
tested.”* The adsorption/desorption kinetics and the strength
of binding energy ought to be intermediate for hydrogen to
bind on the material surfaces with an optimal adsorption
energy range. Owing to the obvious reasons mentioned above
and the survey of previous works,””~*" 2D bilayer h-BN looks
promising with numerous adequate functional properties such
as high mechanical stability, carrier mobility, and outstanding
electronic and optical properties which encourages its further
utilization for energy-storage applications.””™*® Motivated by
this, we explore the possibility of using bilayer h-BN for H,
storage by employing first-principles calculations. We analyzed
trends in binding energy, desorption temperature, effective
mass of electron and holes, and subsequently their effects on
the structural and electronic properties of bilayer h-BN using
state-of-the-art computational techniques.

B COMPUTATIONAL DETAILS

Bilayer h-BN was constructed by stacking two h-BN
monolayers in a AA’-stacking configuration which has been

proven to be the most stable configuration,””**”" having an in-
plane lattice constant of a = 2.488 A.*””° A vacuum of 15 A is
inserted in the out-of-plane direction to avoid spurious
interactions of wave functions. We used a 3 X 3 X 1 supercell
consisting of 36 atoms with the B/N stoichiometric ratio of 1:1
as shown in Figure 1. The van der Waals interactions’' were
incorporated using Grimme’s DFT-D2 scheme.”” The
geometry of bilayer h-BN was optimized within the force
field approximation using an interatomic potential developed
by Stillinger Weber.”>”* Because bilayer h-BN can accom-
modate eight H, molecules between the layers at its optimal
capacity, geometrical relaxations were performed for all cases
after inserting H, molecules. Moreover, the electronic
properties were computed at the level of generalized gradient
approximations (GGAs) of type Perdew—Burke—Ernzerhof”
and DFT-1/2,°*°7 and a comparison has been made between
both approaches. As both GGA and DFT-1/2 were treated as
semilocal functionals within the framework of Kohn—Sham
density functional theory (DFT),”® self-consistency is achieved
in the iterative solution for each case. A basis of the linear
combination of atomic orbitals has been opted as programmed
in the Quantumwise VNL-ATK package.” Finally, a detailed
study of each system was made possible while integrating the
first Brillouin zone with dense Monkhorst—Pack 16 X 16 X 1
k-mesh,'% and the k-point convergence plot is supplied in the
Supporting Information. Also, for the sake of reproducibility of
our work, the relaxed atomic coordinates of the h-BN bilayer
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Figure 3. (2) Binding energy per H, molecule. (b) Interlayer spacing between adjacent h-BN monolayers. (c) Wt % with respect to H, content. (d)
Desorption temperature (Tp) of bilayer #-BN with the number of H, molecules ny = 0, 1,2, 3,4, S, 6, 7, and 8.

and the hydrogen-adsorbed system are provided in the
Supporting Information.

B RESULTS AND DISCUSSION

The optimized in-plane lattice parameters of 2.52 A and the
interlayer spacing of 3.34 A for the pristine bilayer h-BN are in
good agreement with previous studies.””””'°" The ability of h-
BN as a hydrogen-storage material relies on accommodating
maximal number of H, molecules while maintaining the
stability (without undergoing structural deformation). In this
regard, geometrical optimizations were performed by inserting
H, molecules one after the other in the cavity of bilayer h-BN.
The hollow site (in the middle of the hexagonal crystals) turns
out to be the minimum-energy configuration for which atomic
relaxations were performed following the Broyden-Fletcher-
Goldfarb-Shanno scheme by gradually increasing the H,
content. Figure 2a—i shows the electron localization function
(ELF) of pristine and Hy-adsorbed bilayer #-BN. The presence
of electronic cloud between the B and N atoms shows the
presence of intralayer covalent bonds, whereas bigger lobes
around the H-H bond in between the cavity for each H,
molecule depicts the same.

We first check the stability of our systems by computing the
binding energy (E,) per H, molecule up to maximal H,
molecular capacity by using the following definition

Er — (EBN + nEH)

n

By (1)

where Ep is the total energy of the combined system (h-BN +
H,), Egy is the total energy of the pristine bilayer h-BN, n is
the number of H, molecules, and Ey refers to the total energy
of H, molecules. As shown in Figure 3a, E, remains negative
even for the optimal number of H, molecules, which indicates
stability of our systems in accommodating H, molecules in the
bilayer h-BN cavity. Moreover, the interlayer spacing between
the neighboring h-BN layers was found to be increasing with
the increase of H, molecules (see Figure 3b). We attribute this
to the expanded electronic cloud between the van der Waals
gap of bilayer systems.

To provide a quantitative account of H, storage, we also
compute dimensionless weight percentage (Wt %) for all given
cases in Figure 3c using the definition of eq 2'

30364

My

Wt%=l X 100

2

where My and Mgy are the molecular masses of the H,
molecule and bilayer h-BN, respectively. As expected, the Wt %
increases by adding more H, molecular content (see Figure
3c). Because the bilayer cavity can hold up to eight H,
molecules, it gives a Wt % value of 4% which is slightly less
than the previously reported value of 6%.”* Another key aspect
in this realm is to analyze the reversibility kinematics
(adsorption = desorption) for which we computed the
desorption temperature (Tp) for all H, adsorbed bilayer
systems using the Van’t Hoff equationlm’lo4 given as

E4  XR
Kz(AS — R1nP)

H +MBN

T, (K) =
b (K) )

where E,q4 is the average adsorption energy, R = 8.3145 JK ™'
Mol ™! is the gas constant, Ky = 1.38 X 107> JK™" is Boltzmann
constant, AS represents the change in H, entropy from the gas
to liquid phase, and P is the equilibrium pressure taken to be 1
atm, respectively. The calculated Tp, ranges from 1399 K to
279 K when increasing the number of H, molecules from one
to eight, as shown in Figure 3d. Our results of T} are above the
room temperature (except for 8H,, which is just below the
room temperature) up to the maximum gravimetric Wt % of
3.4%, indicating bilayer h-BN to be a potential material for
storing H, molecules at elevated temperatures.

We next computed one-dimensional electrostatic potential
(Vg) and distribution of charge densities () in the out-of-
plane direction presented in Figure 4a,b. Referring to the black
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Figure 4. (a) Electrostatic potential (V) and (b) charge density (1)
of bilayer h-BN with the number of H, molecules ny; =0, 1, 2, 3, 4, 5,
6, 7, and 8.
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Figure S. Electronic band structures and DOS of bilayer 4-BN with number of H, molecules (a) ny = 2, (b) ny = 4, (c) ny = 6, and (d) ny = 8. The
rest of electronic band structures and DOS are provided in the Supporting Information.

line in Figure 4a, it is noteworthy that the pristine bilayer has a
flat shallow potential in between the two h-BN monolayers.
However, by inserting H, molecules in between the bilayer
cavity, the shallow peak gradually rises analogous to the case of
trap electrons in a typical square well potential. The peak
intensity also increases with the increase of H, molecular
concentration, except for the case of n = 4 (yellow line in
Figure 4a). Here, the potential peak crosses the Fermi level
(Ep) giving rise to the tunneling barrier effect. The tunneling
barrier (@) measures the efficiency of the rate of charge
transfer. In the case of 4H,, the stacking configuration is
transformed from AA’- stacking configuration to AB stacking.
Also, one of the H, molecules under structural optimization
moved in the vertical direction leading to an increase in the
interlayer distance to 6.8 A. The change in the stacking
configuration and the movement of a single H, molecule close
to one of the layers have led to the change in the charge
distribution, thus leading to the exceptional case for n = 4.
Higher value of @ is a hindrance to the charge transfer from h-
BN — H, molecules. Following the Bader charge analysis, this
can be inferred by the increase in charge density at the
hydrogen site by a small amount of 0.02¢, 0.017¢, 0.034e,
0.021e, 0.048e¢, 0.055¢, 0.072¢, and 0.079e for n; =0, 1,2, 3, 4,
S, 6, 7, and 8, respectively. Because none of the potential peaks
crosses Ep except at ny = 4, we assume @ = 0 for all systems
which allows charge transfer near the Fermi level. We can also
draw similar conclusions from the one-dimensional electron
density (n) plot as shown in Figure 4b. Here, the peaks in the
center are due to the accumulation of charge localization of H,

30365

molecules whose intensity increases by the addition of H,
molecules. On the other side, no significant changes are
observed in the charge density profiles at the B and N atomic
sites. However, we notice that separation between the two
peaks increases with the increase of H, molecular content. We
thus conclude that the increase in the number of H, molecules
creates a repulsive force between the two h-BN layers.

We next examine the electronic behavior of all cases (H,
inserted bilayer h-BN) by calculating the electronic band
structures and density of states (DOS) shown in Figure S. In
our previous work, we have already reported the accuracy of
DFT-1/2 over GGA functionals in which an increase in band
gap of h-ZnSe depicts consistency of results corresponding to
other higher-order functionals.'” Referring to the band
structures and DOS plots in the present situation, we again
notice an increase in the band gaps in all cases within DFT-1/2
as compared to the GGA functional. Pristine bilayer h-BN
exhibits an indirect band gap using both DFT-1/2 and GGA
approximations along the I' — M high-symmetry direction.
The calculated values of the indirect band gap from DFT-1/2
and GGA approaches are 6.07 eV and 4.553 eV, respectively,
for which an enhancement of ~33% is observed by the former.
The gap thus formed is a consequence of in-plane bonding
between the p-orbitals of B and N atoms correctly described by
the DFT-1/2 functional. The electronic states emerge due to
the presence of H-s orbitals in the energy range of 3—4 eV (see
Figure S). We compared the band gaps obtained from DFT-1/
2 and GGA functionals with the previous results from LDA/
GGA®**'* and higher-order DFT-functionals**'"’~'% and
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found them in qualitative agreement. The calculated direct
band gaps of the pristine and 1, 3, 5, and 7 adsorbed hydrogen
molecules from GGA and DFT-1/2 are presented in the
Supporting Information The values of calculated direct band
gaps from GGA and DFT-1/2 are presented in Figure 6a,b.
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Figure 6. (a) Direct band gap using the GGA functional, (b) direct
band gap using the DFT-1/2 functional, (c) direct—indirect band gap
using GGA, and (d) direct—indirect band gap using DFT-1/2 of
bilayer h-BN with the number of H, molecules n;; = 0, 1, 2, 3, 4, S, 6,
7, and 8.

Interestingly, by the insertion of H, molecules, we notice a
transition from indirect to direct band gap for both DFT-1/2
and GGA functionals (see Figure 6a—d). However, increasing
the H, molecular content has also reduced the band gap due to
the repulsive force exerted on the B—N monolayers as
discussed above (see Figure 3b).

The effective mass of holes (m;*) and electrons (m*) is also
computed with respect to the valence band maxima and
conduction band minima given by eq 4"

m* = h? dz_E B
dk® )

where E is the band energy and k refers to the wave vector of
the respective charge carrier. Using both DFT-1/2 and GGA
functionals, effective masses along the longitudinal (||) and
transverse (L) directions are presented in Figure 7a,b.

For the pristine bilayer h-BN, effective electron mass along ||
and 1 directions is 2.12 m, and 0.96 m,, respectively, which is
in reasonable agreement with the previously reported values of
221 (M = L) and 0.26 m, (M — I').""" Similarly, the effective
hole masses of 0.7S m, (L) and 1.27 m, (]|) are in good
agreement with 0.50 m, (M — I') and 1.33 m, (M — L).""'
The higher value of m¥ is due to the presence of a flat band
along the high-symmetry M — K path in the conduction band
region, as shown in Figure Sa. We also compute the relative
electron and hole effective mass ratio (D) using the relation D
= m¥/mi¥ and is given in Table 1 for each case.

Finally, we compute the H, diffusion barrier taking multiple
images between the initial and final ground states by means of
the nudged elastic band method as shown in Figure 8. Since
hollow site is the minimum-energy configuration as discussed
before, two different paths are chosen for H, propagation
considering the bridge site (passing through the B—N bond).
As can be seen in Figure 8a,b, the diffusion barrier amounts to

12 = —_— —
(@) W o DFT-112 4f® W m “DFT-172
9 | mCL—GGA—van )

c m,"-DFT-1/2 4 fd)
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Figure 7. Using DFT-1/2 and GGA functionals, (a) electron effective
mass along the longitudinal direction, (b) hole effective mass along
the longitudinal direction, (c) electron effective mass along the
transverse direction, and (d) hole effective mass along the transverse
direction for bilayer h-BN with increasing number of H, molecules ny;
=0,1,23 4,56 7 and 8.

Table 1. Calculated Relative Electron and Hole Effective
Mass Ratios (D) Using DFT-1/2 and GGA Functionals

ny DE}GA DéGA DP)FT—I /2 DéFT—l /2
0 1.669 1.280 3.283 1.563
1 1.103 1.123 1.180 1.253
2 1.395 1.424 1.240 1.140
3 1.535 1.794 1.359 1.035
4 1.473 1.455 1.283 1.304
S 1.953 1.813 1.639 1.426
6 1.672 1.985 1.235 1.127
7 1.256 1.464 0.795 0.679
8 8.737 2.365 0.942 0.341

0.25 eV for the neighboring hexagonal site compared to 0.43
eV for the second path. For a single H, with an optimized
interlayer distance, the diffusion barrier amounts to 0.046 eV
for the neighboring hexagonal site compared to 0.087 and
0.079 eV for the path along the bond site. Similarly, the
diffusion barrier study is conducted by increasing the H,
molecular content in the h-BN bilayer cavity for both the
reaction paths. We notice that the diffusion barrier decreases
with an increase in the H, molecular concentration for both
the paths (see Figure 8c,d). The lower diffusion energy value
signifies the higher hydrogen molecule adsorption and
desorption capabilities (Table 2).

B CONCLUSIONS

We presented theoretical insights into the possible use of
bilayer h-BN as a potential H, storage medium by means of
first-principles calculations. H, molecules energetically prefer
the hollow site between the bilayer cavity for which structural
relaxations indicate enlarged interlayer distances. With the
insertion of optimal H, molecular content, negative binding
energies indicate stability, whereas high desorption temper-
atures upto six H, molecules hint at a possible hindrance to
reversible adsorption and desorption processes in the bilayer
systems. We analyzed electronic dispersion using DFT-1/2 and
GGA density functionals and found the former to correctly
describe energy gaps and their nature in comparison to the
latter. Moreover, effective carrier masses are calculated for each
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Figure 8. (Top) The reaction paths. (a) Bridge site and (b) bond site. (Bottom) Diffusion barriers with the reaction path alongside the (c) bridge

site and (d) bond site with respect to the reaction coordinates.

Table 2. Diffusion Barriers for Two Different Paths, that is,
Through Bridge Site and via B—N Bond Site with Different
H, Molecular Contents

bond site (eV)

iy bridge site (eV) 1st peak 2nd peak
1 0.052 0.087 0.079
2 0.046 0.044 0.049
3 0.042 0.042 0.040
4 0.024 0.015 0.015

case to describe the effects of H, adsorption on the electron or
hole transport. Finally, diffusion barriers indicate that a small
energy barrier is needed for H, molecular propagation across
the hexagonal minimum-energy sites. This comprehensive
study forms the basis of further investigations (both theoretical
and experimental) on potential H,-storage applications using
bilayer h-BN cavity.
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